

NEISSERIA & MORAXELLA

Learning objectives

At the end of the session, the students will be able to

- Describe morphology and antigens
- Describe Pathogenesis & Clinical features
- Choose appropriate lab diagnosis and interpret the results
- Describe prevention and treatment

General features

- Gram-negative diplococci, Catalase and oxidase positive
- Non-motile, aerobic
- Pathogens
- Neisseria gonorrhoeae
- Neisseria meningitidis
- Commensals N. lactamica, N.flavescens, N. mucosa, N. sicca, N. subflava,

NEISSERIA MENINGITIDIS (MENINGOCOCCUS)

- capsulated gram-negative diplococci
- with adjacent sides flattened (lensshaped/half moon-shaped)

- Capsular Polysaccharide
- 13 serogroups A, B, C, X,
 Y & W135—account for the majority of cases of invasive disease
- Non-capsulated Nonpathogenic

- Outer membrane proteins
- LPS and endotoxin
- IgA proteases
- Thansferrin binding proteins

Disease patterns

- Group A Epidemic Subsaharan Africa, Sporadic globally
- Group B MC in USA, Hyperendemic cases (>5/lakh)
- Group C Outbreaks & Sporadic cases
- Group X & Y- Small outbreaks & Sporadic cases
- Group W135- Sporadic cases, epidemics in Subsahara

EPIDEMIOLOGY

- High prevalence areas Sub-Saharan Africa
- India Sporadic cases, occasional outbreaks in North India
- Season Winter & spring
- Age 2 peaks 3m-5yrs, 15-25 yrs

Essentials of MEDICAL MICROBIOLOGY

EPIDEMIOLOGY

- Risk factors that promote colonization include:
- Overcrowding & semiclosed communities schools, military and refugee camps, Travelers (Hajj pilgrims)
- Smoking
- Viral and Mycoplasma infection of respiratory tract
- Risk factors that promote disease :
- Deficiency of terminal complement components (C5–C9)
- Hypogammaglobulinemia
- hyposplenism.

Pathogenesis

- Source Only Humans, nasopharyngeal carriers (mainly children) MC
- Mode of transmission- droplet inhalation
- portal of entry nasopharynx
- Spread of infection from nasopharynx to meninges
- 1. Hematogenous route causing septicemia (most common)
- Direct spread along olfactory nerve through cribriform plate
- 3. Through conjunctiva rare

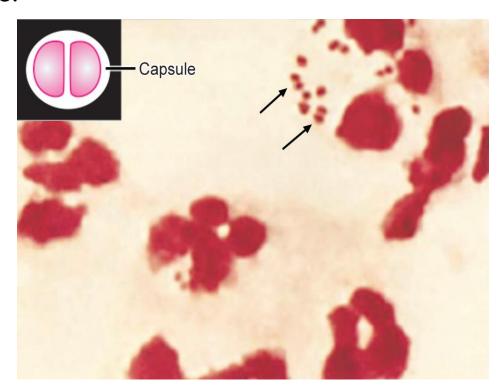
- Asymptomatic colonization -most common
- Rashes: A non-blanching rash (petechial or purpuric) 80%
- Septicemia endotoxin induced endothelial injury

 increased vascular permeability and intravascular
 thrombosis
- Waterhouse–Friderichsen syndrome fulminant meningococcemia - large purpuric rashes, shock, DIC, bilateral adrenal hemorrhage and multiorgan failure

- Pyogenic meningitis
- 3–5 years of age fever, vomiting, headache, neck
- Chronic meningococcemia rare repeated episodes of petechial rash, fever, arthritis, and splenomegaly
- Postmeningococcal reactive disease Immune complexes develop 4−10 days later → arthritis, rash, iritis, pericarditis, polyserositis, and fever
- Mortality >10%, up to 50% when untreated and high frequency (>10%) of severe sequelae.

Laboratory Diagnosis

- Specimen Collection cerebrospinal fluid (CSF), blood and skin scrapings from petechial rashes
- CSF processed immediately. Never be refrigerated meningococci may die on refrigeration
- Blood culture in BHI broth
- Nasopharyngeal swabs, pus or scrapings from rashes carried in transport media (such as Stuart's medium) -> selective media
- Thayer Martin medium, New York City medium


CSF Examination

1 st portion	2 nd Portion	3 rd Portion
Supernatant – -Biochemical analysis -Capsular Ag	Inoculated on enriched media under 5–10% CO2– Blood agar,	Inoculated into enriched broth - BHI broth
Deposit – Gram stain	chocolate agar	

Gram-negative diplococci with adjacent sides flattened (lens or half-moon-shaped)

 Present inside the polymorphs and often extracellular also

- Biochemical Tests
- Catalase and oxidase positive
- Ferment glucose and maltose but not sucrose.

Molecular Diagnosis

Serology

- Antibodies to capsular Ags ELISA.
- Retrospective diagnosis of disease
- To know response to vaccination
- Diagnosis of chronic meningococcemia.

- Third-generation cephalosporins DOC
- Penicillin can also be given; however, reduced sensitivity reported from few countries
- **Symptomatic treatment**, such as aggressive fluid resuscitation (for shock) and measures to decrease intracranial pressure.

Prevention

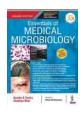
- Chemoprophylaxis To eradicating colonization of close contacts
- **Ceftriaxone** -DOC, Alternatives Rifampicin, Ciprofloxacin

- Immunoprophylaxis Polysaccharide vaccine
- Bivalent (A & C) or Quadrivalent (A,C,Y, & W135)
- Two doses children of 3–18 months Single dose to > 2 yrs
- **Efficacy >95**% Duration of protection 3–5 years
- No vaccine for serogroup B capsule less immunogenic & encephalitogenic

Prevention

- Conjugated vaccine
- Can be given to children < 3yr
- Indication high-risk people
- 1. contacts of patients during outbreaks
- 2. Splenic dysfunction
- 3. Terminal complement component deficiency
- 4. Taking eculizumab therapy
- 5. Laboratory staff at risk.

NEISSERIA GONORRHOEAE (GONOCOCCUS)

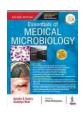

Virulence Factors

- Mi or fimbriae Adhesion to host cells & prevent phagocytosis
- Outer membrane proteins –
- Porin (protein I) ->50% of OMP
- PorB.1A strains local and disseminated gonococcal infections
- PorB.1B strains- local genital infections only

Virulence Factors

- Opacity-associated protein (Protein II) adhesion to neutrophils & other gonococci
- Transferrin-binding and lactoferrin-binding proteins
- IgA1 protease protection from mucosal IgA
- **Lipo-oligosaccharide (LOS) -** endotoxic activity.

- Gonorrhea
- Males:
- Acute urethritis MC manifestation
- Purulent urethral discharge ('gonorrhea'- flow of seed)
- Incubation period is 2–7 days
- Complications epididymitis, prostatitis, balanitis & water-can perineum



Females

- Infection is less severe More asymptomatic carriage than males
- Mucopurulent cervicitis MC presentation
- Vulvovaginitis in prepubertal girls & postmenopausal women- vagina mucosa thinned out & higher pH
- Not in adult females resistant to gonococcal infection (low pH and thick stratified squamous epithelium)

- **Spread Bartholin's gland,** endometrium and fallopian tube. Salpingitis and pelvic inflammatory disease → sterility
- Fitz-Hugh-Curtis syndrome rare peritonitis & perihepatic inflammation.
- Both the sexes
- Anorectal gonorrhea
- Pharyngeal gonorrhea
- Ocular gonorrhea

- Pregnant women
- prolonged rupture of the membranes, premature delivery, chorioamnionitis, and sepsis in the infant

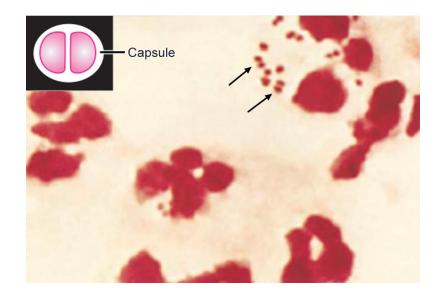
- Meonates (Ophthalmia neonatorum)
- colonized maternal genital flora
- Purulent eye discharge within 2-5 days of birth

- Disseminated gonococcal infection (DGI)
- Rarely following gonococcal bacteremia
- Polyarthritis and rarely dermatitis & endocarditis

- In HIV-infected persons
- Nonulcerative gonorrhea

Epidemiology

- Incidence decreased indeveloped countries
- Under reporting due to stigma
- Host exclusively human disease
- Source asymptomatic female carriers or less often patient
- Transmission
- 1. sexual contact (venereal)
- 2. Mother to baby during birth.


Laboratory Diagnosis

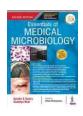
- Specimen Collection
- Urethral swab in men and cervical swab in women
- Dacron or rayon swabs
- In chronic urethritis secretion after prostatic massage or morning drop of secretion
- Transport Media Charcoal-coated swabs kept in Stuart's transport medium, Amies medium, JEMBEC or Gono-Pak system

Microscopy

- Gram-negative intracellular kidneyshaped diplococci
- 50% sensitive

Laboratory Diagnosis

- Culture
- Endocervical culture has a sensitivity of 80–90%
- Cervical swabs contain normal flora selective media preferred (Inhibit commensal Neisseria)
- Thayer Martin medium Chocolate agar with vancomycin, colistin and nystatin
- Modified New York City medium Lysed blood agar and lincomycin, colistin, trimethoprim and amphotericin B
- Martin–Lewis medium.


Laboratory Diagnosis

- Biochemical Tests
- To differentiate gonococci from other commensal *Neisseria species*
- Gonococci are catalase and oxidase positive
- Ferment only glucose, but not maltose and sucrose.

TREATMENT

- Third generation cephalosporins DOC foruncomplicated gonococcal infection
- Both the sexual partners should be treated
- Ceftriaxone (250 mg given IM, single dose)
- Cefixime (400 mg given orally, single dose).
- % coexisting chlamydial infection azithromycin or doxycycline added.

DRUG RESISTANCE

PPNG	Penicillinase producing Neisseria gonorrhoeae -Plasmids coding for β-lactamases are transferred by conjugation
CMRNG	Chromosomally mediated resistant N. gonorrhoeae - Resistance to penicillin and tetracycline - Mutations at multiple sites, which decreases the permeability of the cell to antibiotics
TRNG	Tetracycline-resistant N. gonorrhoeae, plasmid-borne
QRNG	Quinolone-resistant Negonorrhoeae

© 2018, Jaypee Brothers Medical

ongonococcal (Nonspecific) urethritis

- Chronic urethritis where gonococci cannot be demonstrated
- NGU is more common than gonococcal urethritis.
- %Bacteria:
- Chlamydia trachomatis: Most common agent
- Ureaplasma urealyticum, Mycoplasma hominis
- Gonococcal infection, cocci in L forms
- Wiruses: Herpes simplex virus & Cytomegalovirus
- %bungi Candida albicans
- **Barasites** Trichomonas vaginalis

Gonococcal v/s Non-gonococcal urethritis

Features	Gonococcal urethritis (GU)	Non gonococcal urethritis (NGU)
Onset	48hrs	Longer (>1week)
Urethral discharge	Purulent	Mucous to mucopurulent
Complication	Polyarthritis and endocarditis Water-can perineum	Reiter's syndrome- conjunctivitis, urethritis, arthritis and mucosal lesions
	 Other complications are common to both GU and NGU such as- Males- epididymitis, prostatitis, seminal vesiculitis and balanitis Females- Salpingits and pelvic inflammatory disease and Fitz-Hugh-Curtis syndrome 	

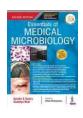
Gonococcal v/s Non-gonococcal urethritis

Features	Gonococcal urethritis (GU)	Non gonococcal urethritis (NGU)
Diagnosis	 Gram stain, Culture on Thayer Martin media 	 For Chlamydia-culture on McCoy and HeLa cell lines Trichomonas- detection of trophozoite Candida- detection of budding yeast cells in discharge PCR- can be done for HSV or Chlamydia

Meningococcus v/s Gonococcus

N.meningitidis	N.gonorrhoeae
Capsulated	Non- Capsulated
Diplococci adjacent sides flattened	Diplococci adjacent sides concave
Ferment glucose and maltose	Ferment only glucose
Rarely have plasmids	Usually possess plasmids, coding for drug resistance genes
Both intra and extracellular	Predominantly intracellular
Colony- circular	Colony- vary in size with irregular margin
Habitat- Nasopharynx	Habitat- genital tract (urethra, cérvix), rarely pharynx.

MORAXELLA


Moraxella catarrhalis

- Morphology: Gram-negative diplococci with flattened adjacent sides
- Culture: Basal medium like nutrient agar
- Biochemical reactions: Catalase & oxidase positive
- Differs from pathogenic *Neisseria as:*
- Does not ferment any carbohydrate
- Tributyrin hydrolysis test Positive
- DNase test positive.

Moraxella catarrhalis

- Pathogenesis
- Opportunistic lower respiratory tract infections in adults with COPD
- Can rarely cause otitis media, meningitis, endocarditis & sinusitis
- Some strains of *M. catarrhalis* secrete **beta-lactamases** which destroy penicillin that makes β-lactam antibiotics ineffective to meningococci and other penicillin-sensitive bacteria of the respiratory tract.

Moraxella lacunata

- Also called Morax-Axenfeld bacillus
- Non-fermenting gram-negative rod-shaped and generally present as pairs
- Causes catarrhal conjunctivitis, and angular conjunctivitis

THANK YOU..!