MYCOLOGY-1

<u>General properties of fungi &</u> <u>Candidiasis</u>

GENERAL MYCOLOGY

- Medical mycology branch of medical science that deals with the study of medically important fungi
- 'fungus' is derived from Greek 'mykes' meaning mushroom (a type of edible fungus)

Fungi differ from bacteria & other eukaryotes

- Possess a rigid cell wall, composed of chitin, βglucans and other polysaccharides
- Cell membrane contains ergosterol instead of cholesterol
- May be unicellular or multicellular
- Lack chlorophyll and divide by asexual and/or sexual means by producing spores

Morphological Classification of Fungi

1. Yeast: Round to oval cells that reproduce by budding

- Cryptococcus neoformans (pathogenic)
- Saccharomyces cerevisiae (non-pathogenic)
- 2. Yeast-like: Yeasts forming pseudohyphae (e.g. Candida)
- Differentiated from true hyphae as they have constrictions at septa
- **3. Molds**: long branching filaments called hyphae
- Hyphae septate or nonseptate

Morphological forms of fungi

Classification of Fungi

- Based on the growth pattern in culture medium
- Aerial mycelium: It is the part of the mycelium which projects above the surface of culture medium
- Vegetative mycelium: It is the part of the mycelium that grows on the surface of the culture medium

Morphological Classification of Fungi

- **4. Dimorphic fungi:** exist as molds (hyphal form) in the environment at ambient temperature (25°C) and as yeasts in human tissues at body temperature (37°C)
- Histoplasma capsulatum
- Blastomyces dermatitidis
- Coccidioides immitis
- Paracoccidioides brasiliensis
- Penicillium marneffei
- Sporothrix schenckii.

Taxonomical Classification

- Based on the production of sexual spores
- 1. Phylum zygomycota: sexual spores zygospores, and possess aseptate hyphae, e.g. *Rhizopus and Mucor*.
- 2. Phylum ascomycota: Sexual spores ascospores and possess septate hyphae, e.g. Aspergillus.
- 3. Phylum basidiomycota: Sexual spores basidiospore e.g. Cryptococcus
- **4. Phylum deuteromycota (Fungi imperfecti):** sexual state is either absent or unidentified yet

Types of fungal spores

Sexual Spore	Observed in-
Zygospores	Zygomycetes
Ascospores	Aspergillus
Basidiospores	Cryptococcus
Asexual Spore	Observed in
Vegetative asexual spore	
Arthrospore	Coccidioides Trichosporon
Blastospore	Candida
Chlamydospore	Candida albicans

Types of fungal spores

Aerial asexual spore	
Conidiospore or conidia	Aspergillus
Sporangiospore	Zygomycetes
Microconidia	Dermatophytes
Macroconidia	Dermatophytes

CLASSIFICATION OF FUNGAL DISEASES

Superficial mycoses	Agents	
Tinea versicolor	Malassezia furfur	
Tinea nigra	Hortaea werneckii	
Piedra	Trichosporon beigelii, Piedraia hortae	
Dermatophytosis	Trichophyton, Microsporum, Epidermophyton	
Subcutaneous mycoses		
Mycetoma	Madurella mycetomatis, Pseudallescheria boydii, etc	
Sporotrichosis	Sporothrix schenckii	
Chromoblastomycosis	Phialophora verrucosa Fonsecaea pedrosoi	
Rhinosporidiosis	Rhinosporidium seeberi	

CLASSIFICATION OF FUNGAL DISEASES

Systemic mycoses	
Histoplasmosis	Histoplasma capsulatum
Blastomycosis	Blastomyces dermatitidis
Coccidioidomycosis	Coccidioides immitis
Paracoccidioidomycosis	Paracoccidioides brasiliensis

CLASSIFICATION OF FUNGAL DISEASES

Opportunistic mycoses

Candidiasis	Candida albicans, Other Candida species
Cryptococcosis	Cryptococcus neoformans
Zygomycosis	Rhizopus, Mucor, Absidia
Aspergillosis	Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger
Penicilliosis	Penicillium marneffei, Other Penicillium species
pneumocystosis	Pneumocystis jirovecii
Mycotoxicoses	

LABORATORY DIAGNOSIS OF FUNGAL DISEASES

- Specimen Collection
- Depends on site of infection skin scraping, hair, nail, sputum, etc.
- Systemic mycoses blood sample,
 Cerebrospinal fluid (CSF), etc

- Demonstration of Fungal elements
 in the specimen
- Potassium hydroxide (KOH) preparation: Keratinized tiss specimens treated with 10%
 → digests keratin → fungal clearly seen
- 20–40% KOH nail & hair

Microscopy

✤ KOH preparation

- **Biopsy specimens** dissolved in 10% KOH in a test tube and examined after overnight incubation
- **Glycerol** (10%) can be added to prevent drying
- **DMSO** (dimethyl sulfoxide) help in tissue digestion
- ✤ Eactophenol cotton blue (LPCB):
- Phenol acts as disinfectant
- Lactic acid preserves the morphology of fungi
- Glycerol prevents drying
- Cotton blue stains the fungal elements blue

- **Gram stain**: *yeasts & yeast like fungi appear* as gram-positive budding yeast
- India ink and nigrosin stains: negative stains for demonstration of capsule of *Cryptococcus neoformans*
- Calcofluor white stain: more sensitive
- Binds to cellulose and chitin of fungal cell wall and fluoresce under UV light

Histopathological stains

- For demonstrating fungal elements from biopsy tissues
- **Periodic acid schiff (PAS) stain:**
- PAS positive fungi appear magenta/deep pink, whereas the nuclei stain blue
- PAS which stains only the live fungi
- Masson fontana stain: for pigmented (or pheoid) fungi
- Hematoxylin and Eosin stain
- Mucicarmine stain: for staining the carminophilic cell wall of *Cryptococcus and Rhinosporidium*

Histopathological stains

- Gomori methenamine silver (GMS) stain:
- Alternative to PAS
- Stains both live and dead fungi
- Stains the polysaccharide component of the cell wall
- Fungi appear black & background pale green color,,

Culture Media

- Sabouraud's dextrose agar (SDA):
- Most commonly used medium
- Contains peptone (1%), dextrose (4%) and pH of 5.6
- May not support some pathogenic fungi
- Neutral SDA (Emmons' modification):
- Differs from original SDA in having neopeptone (1%) and dextrose (2%) and pH of 7.2

Culture Media

- **Corn meal agar and rice starch agar**: Nutritionally deficient media used for stimulation of chlamydospore production
- By ain heart infusion (BHI) agar and blood agar: Enriched media, used for growing fastidious fungi like Cryptococcus and Histoplasma
- Niger seed agar and bird seed agar: selective growth of Cryptococcus
- **CHROMagar** *Candida* medium: selective as well as differential medium for speciation of Candida

Culture Condition

- Temperature: Most of the fungi grow well at 25–30°C except the dimorphic fungi that grow at both 25°C and 37°C
- BOD incubators (biological oxygen demand): capable of maintaining low temperature
- **Incubation time**: 2–3 weeks
- Antibiotics cycloheximide (actidione), chloramphenicol and gentamicin - added to the culture media to inhibit bacterial growth

Culture Identification

- Based on macroscopic appearance of the colonies grown on culture and microscopic appearance
- Macroscopic Appearance of the Colony
- Rate of growth:
- Rapid growth (<5 days) saprophytes, yeasts and agents of opportunistic mycoses
- Slow growth (1–4 weeks): dermatophytes, agents of subcutaneous and systemic mycoses

Culture Identification

- **Pigmentation**: reverse side of the culture media
- **Texture**: Refers to how the colony would have felt if allowed to touch - glabrous (waxy/leathery), velvety, yeast like, cottony or granular/powdery
- **Colony topography**: rugose (radial grooves), folded, verrucose or cerebriform (brain-like)

- Teased mount:
- LPCB tease mount
- Identification is based on :
- Mature of hyphae (septate or as hyaline or phaeoid, narrow or w and Type of sporulation (conidia sporangia)
- **Shde culture:** in situ microscopi appearance of the fungal colony

Microscopic Appearance of Fungi

- Cellophane tape mount:
- Impressions taken by placing the cellophane tape on the colonies → LPCB mount is made
- Easy to perform than slide culture and in-situ fungal morphology maintained

Other Methods of Identification

- For Candida: Germ tube test, Dalmau plate culture, carbohydrate fermentation and carbohydrate assimilation tests are done
- For dermatophytes: Hair perforation test, dermatophyte test medium and dermatophyte identification medium are used
- **Ufease test** can be done for the fungi that produce urease enzyme, e.g. *Cryptococcus*

Other Methods of Identification

- Immunological Methods to detect antibody or antigen from serum and/or other body fluids
- Antibody detection ELISA, immunodiffusion test, agglutination test, and complement fixation test (CFT)
- Antigen detection latex agglutination test for cryptococcal antigen from CSF
- **Immunohistochemistry**: detecting antigens (e.g. proteins) on cells of a tissue section

Other Methods of Identification

- Tests for Metabolites in body fluids by gas liquid chromatography
- Tests to Demonstrate Delayed Hypersensitivity
- Skin tests Histoplasma, Blastomyces, Coccidioides, Paracoccidioides, Dermatophyte, Sporothrix and Candida.
- Molecular Methods
- Polymerase chain reaction (PCR) and its modifications
- DNA sequencing methods

.

CANDIDIASIS

- Yeast like fungus that produces pseudohyphae
- Species of Candida:
- *Candida albicans:* most common and most pathogenic
- Other Candida species which can occasionally cause infection such as—*C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, C. dubliniensis, C. kefyr, C.guilliermondii* and *C. viswanathii*

Pathogenesis

- Worldwide in distribution. Most common fungal infection
- Predisposing Factors
- Physiological state: Extremes of age (infancy, old age), pregnancy
- **Low immunity**:steroid or immunosuppressive drugs, posttransplantation, malignancy, HIV-infected people
- Patients on broad spectrum antibiotics
- **Others:** Diabetes mellitus, febrile neutropenia and zinc or iron deficiency

Virulence Factors

- Adhesins
- **Enzymes** aspartyl proteinases and serine proteinases tissue invasion
- **Toxins:** Glycoprotein extracts of Candida cell wall are pyrogenic
- Pseudohyphae: Presence of pseudohyphae indicates active infection
- phenotypic switching Ability to transform between three phenotypic forms in the tissue - yeast (blastospores), pseudohyphae, and true hyphae

Phenotypic switching of Candida

- Mucosal candidiasis:
- Oropharyngeal candidiasis : white, adherent, painless patch
- "Vulvovaginitis: pruritus, pain, and vaginal discharge (whitish curd like in severe cases)
- Balanitis and balanoposthitis
- Esophageal candidiasis

Clinical Manifestations

- Chronic mucocutaneous candidiasis
- Infants and children with deficient CMI
- Lesions on hair, nail, skin, and mucous membrane
- Usually resistant to treatment
- Cutaneous candidiasis:
- Intertrigo: erythema and pustules in the skin folds; associated with tight fitting undergarments and sweating

- Paronychia and onychomycosis
- Diaper candidiasis
- Perianal candidiasis
- Erosio interdigitalis blasto
- Generalized disseminated cutaneous candidiasis

Clinical Manifestations

- Invasive candidiasis: hematogenous or local spread
- Urinary tract infection
- Pulmonary candidiasis, Septicemia
- Arthritis and osteomyelitis, Meningitis
- Ocular—keratoconjunctivitis and endophthalmitis
- Hepatosplenic candidiasis, Disseminated candidiasis
- Nosocomial candidiasis (mainly by *C. glabrata*).

Clinical Manifestations

- Allergic candidiasis includes:
- Candidid: allergic reaction to metabolites of Candida - vesicular lesions in the web space of hands and other areas
- Similar dermatophytid reaction
- **Other allergic reactions include:** Gastritis, irritable bowel syndrome and eczema

- Specimen Collection
- whitish mucosal patches skin and nail scrapings, sputum, urine or blood
- Direct Microscopy
- Gram staining grampositive oval budding yeast cells with pseudohyphae

Culture

- SDA with antibiotic supplements at 37°C
- Grow in bacteriological culture media -blood agar
- Blood culture bottles (conventional and automated blood)
- Colonies creamy white, smooth, and pasty with typical yeasty odor[™]

Tests for Species Identification

- Germ tube test: specific test for *C. albicans*
- Also called Reynolds Braude
 phenomenon
- Germ tubes long tube like projections extending from the yeast cells
- Differentiated from pseudohyphae as there is no constriction at the origin

 Dalmau plate culture: Culture on cornmeal agar →C. albicans produces thick walled chlamydospores

 CHROMagar: Different Candida species produce different colored colonies

Tests for Species Identification

- **G**fowth at 45°C:
- It differentiates *C. albicans (grows) from C.ubliniensis (does not grow at 45°C)*
- Carbohydrate fermentation test
- Carbohydrate assimilation
- Molecular methods

Immunodiagnosis

- Amtibody detection: ELISA, latex agglutination tests - antibodies against cell wall mannan antigen
- Antigen detection: cell wall mannan and cytoplasmic antigens ELISA
- **Enzyme detection:** *enolase, aspartate* proteinase
- Test for metabolites: mannitol, arabinitol
- G test is done for detection of b-1-3 -D-glucan

Treatment

- Cutaneous candidiasis or oral thrush: topical azole
- Sophageal and vulvovaginal candidiasis: oral fluconazole or caspofungin
- Sisseminated candidiasis: liposomal amphotericin B or caspofungin
- *C. glabrata and C. krusei* exhibit intrinsic resistance to azoles

• .