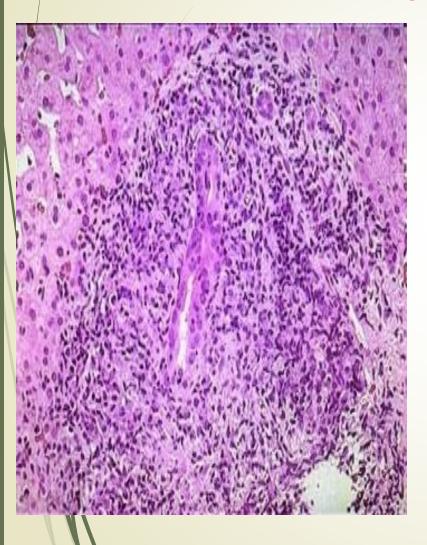
Biliary cirrhosis:

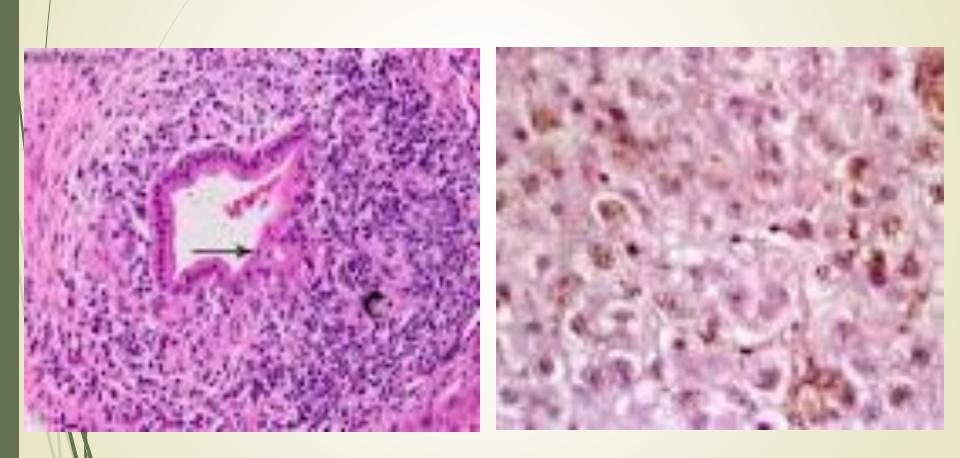
Definition: Chronic disorder characterised

by clinical, biochemical & morphologic features of long-continued cholestasis of intrahepatic or extrahepatic origin.

- (1) Primary biliary cirrhosis.
- (2) Secondary biliary cirrhosis.


Primary Biliary Cirrhosis (PBC)

- More common in middle aged female.
- M:F = 1:9
- Peak incidence between 40 to 50 years of age.
- It is a chronic, progressive and at times fatal cholestatic liver disease characterized by destruction of intrahepatic bile ducts, portal inflammation and scarring, cirrhosis and liver failure.
- Cardinal feature of PBC is a nonsuppurative destruction of small and medium size intrahepatic bile ducts.

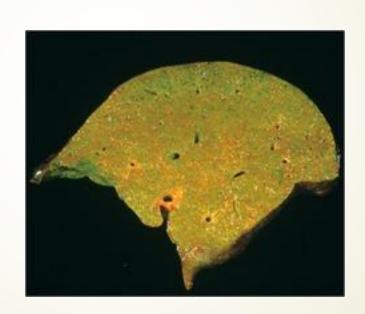

Pathogenesis:

- Autoimmune etiology.
- Antimitochondrial antibodies (AMA)
 & antibodies against other cellular components (eg. Nucleus) of bile ducts.
- Associated autoimmune disease like Sjogren syndrome, scleroderma, thyroiditis.
- Elevated level of IgM type antibodies.

Biliary cirrhosis

chronic inflammation in the portal areas is associated with bile duct destruction by the inflammatory infiltrate comprising of lymphocytes & plasma cells with or without granulomas. These are the hallmarks of the **florid duct** lesions in primary biliary cirrhosis.

- Inflammation and necrosis of periportal parenchyma leads to portal septal fibrosis.
- Two end stage liver disease can occur
 - (1) Nodular regenerative hyperplasia
 - * Nodularity without fibrosis.
 - * Vague nodularity.


(2) Cirrhosis

- * chronic cholestasis (periportal)
- * feathery degeneration marked by

balloon bile stain hepatocytes often with mallory- Denk bodies. (periportal)

End stage liver shows cirrhotic nodules & vivid green discolouration.

Micronodular biliary cirrhosis (Greenish)

Secondary biliary cirrhosis:

Causes:

- (1) Extrahepatic cholelithiasis (gallstone).
- (2) Malignancy of biliary tree or head of pancrease.
- (3) Stricture of biliary tree from previous surgical procedure.
- (4) Obstructive condition in children. e.g Biliary atresia, cystic fibrosis, choledochal cyst.

Hemochromatosis

- Characterised by excessive accumulation of body iron, most of deposited in liver, pancreas and heart.
- Normal total body iron pool 2 to 6 gm.
- About 0.5 gm is stored in liver mainly in hepatocytes
 - (1) Hereditary hemochromatosis.
 - (Primary hemochromatosis)
 - Homozygous recessive inherited disorder.

- Four genetic variants of hereditary hemochromatosis are recognized.
- Autosomal recessive disease of adult onset is most common caused by mutations in the HFE gene.
- Iron accumulates over the lifetime
 due
 - to excessive intestinal absorption.

 Total iron accumulation may exceed

 am.

Fully developed cases show,

- 1. Cirrhosis in all patients
- 2. Diabetes mellitus in 75-80% of patients
- 3. Skin pigmentation in 75-80% of patients

Hemosiderosis (Secondary hemochromatosis)

- (A) Parenteral iron overload.
 - (1) Multiple transfusion in Aplastic anemia, Sickle cell anemia, Leukemia,
 - Myelodysplastic syndrome, Beta thalassemia.
 - (2) Hemolytic anemia.
 - (3) Long term hemodialysis.
 - (4) Iron-dextran injection.

(B) Increased oral intake of iron eg.

African iron overload (Bantu siderosis)

(C) Chronic liver disease.

it shows fibrous connective tissue bands separating regenerating nodules of chocolate-brown hepatic parenchyma.

Pathogenesis:

- In hereditary hemochromatosis, there is a defect in the regulation of intestinal absorption of dietary iron, leading to net iron accumulation of 0.5-1 gm/yr.
- HFE gene responsible for this is called as hereditary hemochromatosis gene located on the short arm of chromosome 6.
 - It leads to upregulated iron absorption and binding to transferrin.

- Other proteins particularly Hepcidin is also involved. HFE and other genes regulate levels
 - of hepicidin (iron hormone).
- Hepcidin normally down regulates iron efflux from intestine and macrophages into plasma and inhibits the iron absorption.
- when hepcidin levels are reduced, increased iron absorption. So in all genetic forms of hemochromatosis, hepcidin levels are reduced

- Hereditary hemochromatosis manifests after
 20gm of storage iron has accumulated
- Excessive iron is directly toxic to host tissue by,
 - (1) Lipid peroxidation of cell organelles via iron catalysed free radical reaction.
 - (2) Stimulation of collagen formation.
 - (3) Interaction of reactive oxygen species & iron with DNA leading to lethal injury or predisposes to hepatocellular carcinoma.

Morphology:

- Deposition of hemosiderin in liver, pancreas, myocardium, pituitary, adrenal gland, thyroid & parathyroid, joints & skin.(in \u2211ing severity)
- Iron is seen as golden yellow hemosiderin granules in cytoplasm of periportal hepatocytes.
- With increasing iron load, rest of the lobule,
 bile duct epithelium & kupffer cells are involved.
- Liver becomes larger, dense and chocolate brown. Portal-portal fibrous septa leads to cirrhosis.

- Iron is directly hepatotoxic.
 Inflammation is absent.
- Pancreatic fibrosis leads to Diabetes.
- Skin pigmentation.
- Bronze Diabetes
- HÉMOSIDERIN DETECTED BY PRUSSIAN BLUE REACTION.

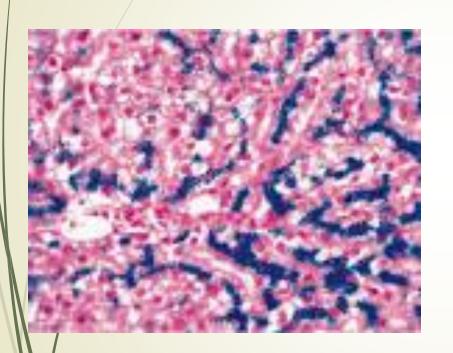
Copper – Bronze pigmentation due to hemosiderin & increased melanin.

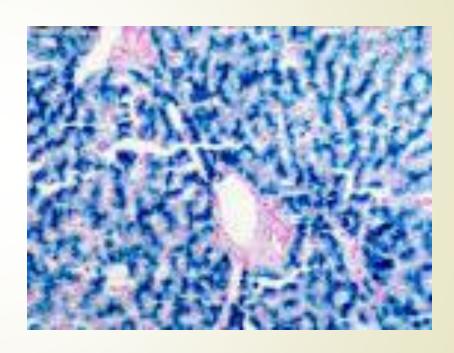
- In normal person iron content of liver tissue is
- < 1000 microgm/gm dry weight.
- In hereditary hemochromatosis > 10000 microgm/gm dry weight.
- When in excess of 22000 microgm/gm dry weight it causes fibrosis and cirrhosis.

PANCREAS:

Intensely pigmented.

Diffused interstitial fibrosis.


Some parenchymal atrophy.


HEART: Enlarged, Hemosiderin granules in myocardial fibres, Brown pigmentation of myocardium, Delicate interstitial fibrosis

SKIN: Hemosiderin deposition in dermal macrophages & fibroblast, 1ed epidermal melanin production, Combination of these pigments imparts slate grey colour.

In JOINTS: causes acute synovitis

Prussion Blue reaction

CLINICAL FEATURES:

- M : F = 5 to 7 : 1
- Earlier symptoms in male (no physiological loss of iron)
- •5th-6th decade in male, later in female.
- Hepatomegaly, skin pigmentation, abnormal glucose metabolism, cardiac dysfunction, atypical arthritis

 The classic clinical triad of cirrhosis with hepatomegaly, skin pigmentation & diabetes mellitus may not develop until late course of disease.

Causes of Death:

- Cirrhosis of liver.
- Cardiac disease.
- Hepatocellular carcinoma-200 fold greater risk.

Wilson disease

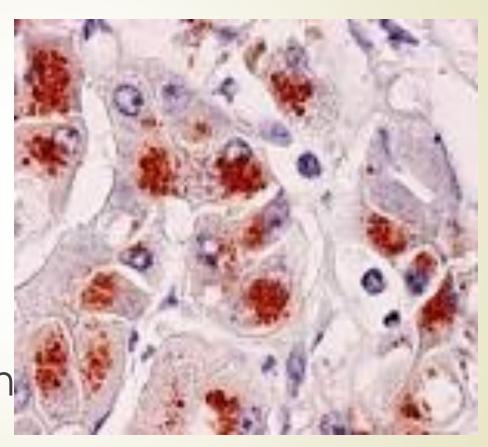
- Defi. Autosomal recessive disorder marked by accumulation of toxic level of copper in many tissues & organ principally liver, brain & eye.
- Mutation in ATP7B gene on chromosome
 13.

- Pathogenesis:
- Normal physiology:
- Absorption of ingested copper(2-5 mg/day)
- 2) plasma transport via albumin
- 3) Hepatocellular uptake and binding to alpha2 globulin to form ceruloplasmin
- 4) Secretion of ceruloplasmin in plasma (90% plasma copper)
- Hepatic uptake of senescent ceruloplasmin, lysosomal degradation and secretion of free copper in bile.

- In wilson disease, absorption and transport are normal.
- Without ATP7B activity, copper can not bind to alpha2 globulin and therefore cannot be excreted into bile, Primary route for copper elimination from body.
- Copper accumulates in hepatocytes.
- 1) Formation of free radicals
- 2) / Binding to sulfhydryl group of cell proteins
 - Displacing other metals in hepatic metalloenzyme

- Deposition in liver leads to ,
 - (1) Fatty change.
 - (2) Acute hepatitis-Mallory bodies are seen.
 - (3) Chronic hepatitis.
 - (A) Submassive hepatic necrosis.
 - (5) Macronodular cirrhosis.

- Deposition in brain.
- Toxic injury to basal ganglia leads to atrophy & cavitation.
- Neuropsychiatric manifestations.
 - i.e. behavioural changes, frank psychosis, parkinson disease like syndrome.


- Deposition in eye **Kayser-fleischer rings -i.e.** green to brown deposits of copper in Descemet's memb. in limbus of cornea.
- Treatment- long term copper chelation therapy. D- penicillamine.
- Investigation.
 - (1) Decreased in ceruloplasmin.
 - (2)/increased in hepatic copper content.
 - (3) Increased urinary excretion of copper.
 - \$erum copper level no diagnostic value.

K-F Ring in Cornea

(rhodanine stain) highlights the accumulation of copper in the hepatocytes of patients with Wilson disease.

Copper stain orange to red with blue nuclei.

Alpha 1-Antitrypsin deficiency

- Autosomal recessive disorder
- Low serum levels of this important protegse inhibitor
- Also leads to pulmonary emphysema
- Hepatic disease results from accumulation of mutant AAT
- AAT gene is located on chromosome

- AAT gene is located on chromosome 14
- 75 forms of it have been identified
- Homozygous for Z allele PiZZ genotype have 10% of levels of AAT
- There is single aminoacid substitution results in misfolding of polypeptide in hepatocyte
- As mutant forms can not be secreted, they accumulate in hepatocytes and lead to apoptosis

Morphology:

- Hepatocytes show round to oval cytoplasmic globular inclusions containing AAT.
 - PAS Positive & Diastase resistant.
- Hepatic injury with PiZZ range from cholestasis with hepatic necrosis to childhood cirrhosis in newborn.

CLINICAL FEATURES:

- Neonatal hepatitis with cholastatic jaundice
- In adolescence Hepatitis or cirrhosis
- Hepatocellular carcinoma in 2-3 % of cases

