$$
\begin{gathered}
\text { Descriptive } \\
\text { Epidemiology }
\end{gathered}
$$

Descriptive Epidemiology

Study of the occurrence and distribution of disease

Terms:
Time
Place
Person

(Reservoir) Source of infection

- Contaminated well water
- Bhopal Gas tragedy
- Contamination whole batch of food product
- Minamatta disease in Japan- acute mercury poisoning
- Contaminated food served in the party
- Food handler suffering from typhoid
- Child suffering from measles
- Mosquito borne disease
- Leptospirosis, Plague.....

Time Trends\Fluctuations

Propagated

Fluctuation

Seasonal

Slow/ Modern

Short Term = "Epidemics"

Occurrence, clearly in excess, normal expectancy

Short Term Epidemics/ Epidemics

A) Common source 1- Single Exposure/ Point source 2- Multiple exposure/ Continuous/ Repeated
B) Propagated

Transmission factor- Person - Person
Arthropod vector
Animal reservoir
C) Slow (Modern)

Epidemic curve

Common Source-Single Exposure

Common Source-Single Exposure

Common Source-Single Exposure

Common SourceSingle exposure (Point source)

- Brief essentially simultaneous exposure
- All cases within one incubation period
- Rises \& fall rapidly
- No secondary waves
- Explosive with clustering of the cases
- Downward slop- less steep- positively skeweddue to latency/ incubation
e.g.- Food poisoning, Bhopal Gas tragedy "Minamata" disease in Japan.
- If epidemic continuous over more than one incubation period-
a) Multiple exposure/ Continuous/ Repeated
or
b) Propagated

Common Source Continuous/ repeated exposure

- Exposure is prolonged
- Continuous, repeated or intermittent
- Continue beyond the incubation period
- Not necessarily at same place \& time
- Epidemic- extended \& irregular
- No evidence of secondary cases
e.g.- Bad batch drug,

Contaminated well water- hepatitis A

Common Source- Multiple (Repeated) exposure

$$
\sqrt[3]{5}
$$

Propagated Epidemic

- Infectious origin----Respiratory Infections
- Transmission present
- Gradual rise of cases as disease progress by transmission
- Tails off gradually

Susceptibles depleted or no longer exposed

- Speeds depends on immune status \& disease factors
- Prone where large no. of susceptibles are aggregated or new susceptibles are regularly supplied

$$
\bullet------\bullet
$$

$\bullet----\stackrel{-}{-}$

Initial Period of Epidemic

Height of Epidemic
Termination of Epidemic

Initial Period of Epidemic

Height of Epidemic
Termination of Epidemic

Secular Trend

The long-time trend of disease occurrence

Tetanus - by year, United States

Yearly Trend of Estimates of HIV Infections in India in Millions

Long Term (Secular changes)

- Change in disease pattern over a long period of time (years/ decades)
- Show consistent tendency to change in a particular direction
- Not necessarily repetitive e.g.- CHD
- Related to environment/ behavior/ sociocultural factors etc.

Secular Trend

Periodic Trend

Temporal interruption of the general trend of secular variation

Number of reported pertussis cases, by year, United States, 1922-2000

Periodic Fluctuations Seasonal Trend

- Respiratory Infection- Winter
- G.I. Infections - Summer \& Monsoon
- Heat Stroke- Summer
- Directly or in Directly related to environment
Rain fall
Overcrowding
Vector/ Agent factors

Periodic Fluctuations Cyclic Trend

- Appx. < 10 years
- Time required for building up the herd of susceptibles
e.g.- Measles epidemic every 3 years in pre-vaccination era (Naturally occuring variation in herd immunity)

Whooping Cough - Four-monthly admissions, 1954-1973

Measles cases (1921-1930)

Pre vaccination era every 2-3 years

Measles Cases in 19th Century

Measles Cases in 19th Century

Seasonal Trend

Influenza Cases (1000)

Uses of time trend study

- To know effectiveness of measures to control e.g. vaccination
- To formulate aetiological hypothesis

