Thermal comfort and heat stress

Learning Objectives

- At the end of 1 hr didactic session on thermal comfort and heat stress, the students should be able to:
- 1. Describe discomfort and details of various thermal comfort indices
- 2. Interpret CET chart with 100% accuracy
- 3. Describe comfort zones with values
- 4. Define heat stress and describe various heat stress indices with values
- 5. Describe effects of heat stress on human health with corrective measures
- 6. Describe prevention of heat stress

The air of occupied room

- Changes in the air in confined places:
 - •Chemical Changes:
 - Progressive contamination
 - •Per capita output of CO2 = 0.6 c.ft./hr
 - Physical Changes
 - •Rise in temperature
 - Increase of humidity
 - ·Decrease in air movement
 - Body odours
 - Bacterial pollution

- •Comfort, health and efficiency: adversely affected when vitiated air is not replaced by fresh air
- Headache, drowsiness, inability to concentrate...
- •On prolonged exposure: risk of droplet infection and lowered resistance to diseases

Discomfort

- A subjective sensation which people experience in ill-ventilated and crowded rooms
- "Black hole of Kolkata"
- Changes in the physical condition of the air, leading to heat retention
- Temperature, humidity, air movement and heat radiation
- These factors determine the cooling power of the air with respect to human body

Indices of thermal comfort

- 1. <u>Air temperature</u>: inadequate index when considered in isolation
- 2. Air temp and humidity: better but still inadequate
- 3. <u>Cooling power:</u> 2 + air movement (Kata Thermometer wet and dry)

- 4. <u>Effective temperature</u>: an arbitrary index which combines in a single value the effect of temp, humidity and movement of the internal air on the sensation of warmth or cold felt by the human body
 - special charts and scales

- 5. <u>Corrected effective temperature (CET)</u> includes effect of radiant heat
 - ET dry bulb thermometer
 - CET globe thermometer

➤ McArdle's Maximum Allowable Sweat Rate: P₄SR

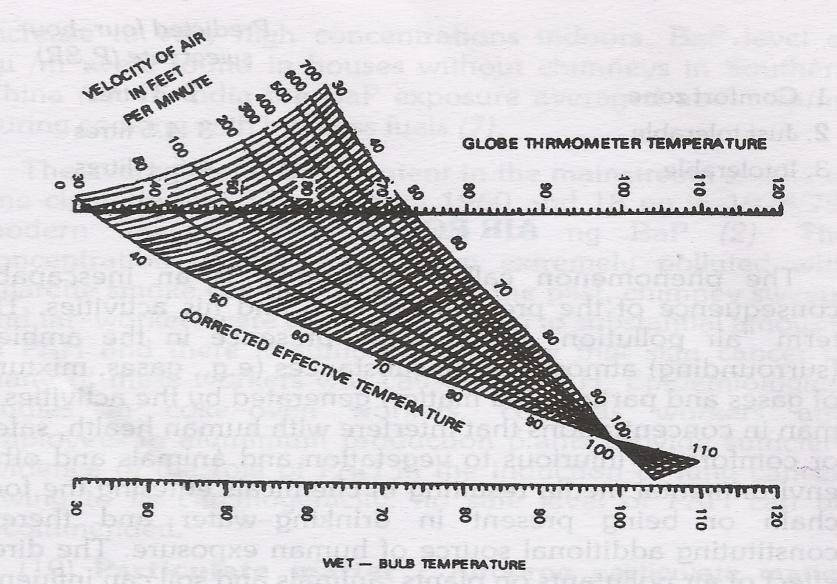


FIG. 1 Effective temperature chart

Comfort Zones

- Comfort: Complex subjective experience, depending on physical, physiological and psychological factors which are difficult to determine
- So, considering only the environmental factors, the comfortable thermal conditions are those under which a person can maintain normal balance between production and loss of heat, at normal body temp and without sweating

Comfort Zones evaluated in India

No.	Type of Zone	CET (Deg C)	
1	Pleasant and cool	20	
2	Comfortable and cool	20-25	
3	Comfortable	25-27	
4	Hot and uncomfortable	27-28	
5	Extremely hot	28+	
6	Intolerably hot	30+	

Comfort Zones evaluated in India

No.	Type of Zone	P ₄ SR (litres)
1	Comfort zone	1-3
2	Just tolerable	3-4.5
3	Intolerable	4.5+

Heat Stress

- The burden or load of heat that must be dissipated if the body is to remain in thermal equilibrium
- Metabolic rate, air temperature, humidity, air movement and radiant temperature
- Amount of heat gained by the body must be equaled by the amount of heat lost from it

Heat stress indices

- Equatorial comfort index: temp of still and saturated air
- \rightarrow P₄SR
- Heat stress index:
 - percentage of heat storage capacity of an average man
 - Takes into consideration the metabolic rate and the principal channels of heat exchange between human body and environment
 - Nomograms

Heat Stress Index - values

No.	Level of stress and strain	Percentage
1	No thermal Stress	0
2	Moderate to mild heat strain	10-30
3	Severe heat strain	40-60
4	Very severe heat strain	70-90
5	Upper limit of heat tolerance	100

Effects of Heat Stress

Heat Stroke:

- Failure of heat regulating mechanism in hypothalamus
- Very high temp; up to 110°F
- Delirium, convulsions, partial or complete loss of consciousness
- Dry and hot skin
- Sweating may be absent or diminished
- Acidotic breathing
- CFR high (40) even if brought quickly to medical attention

Heat Stroke:

- Treatment:

- Rapid cooling, ice water bath till rectal temp falls below 102°F
- Continuous monitoring of rectal temp for efficacy of hypothermia treatment and also to guard against clinically significant hypothermia if cooling is continued too long.
- Correction of hypovolemia, hyperkalaemia, hypocalcaemia, bleeding diathesis, other complications of hyperthermia
- Other supportive including CBR for several days

Heat hyperpyrexia:

- Temp above 106°F
- May proceed to heat stroke

Heat exhaustion:

- Inadequate replacement of water and salts lost in perspiration
- Typically occurs after several days of high temperature
- Body temp normal or slightly elevated; but not more than 102°F
- Dizziness, weakness, fatigue
- Tachycardia, weak pulse, BP and Urine Output decrease

Heat exhaustion:

- Treatment:
 - Removal to cool place
 - Drinking fluids containing salt
 - ORS
 - Some may need hospitalization and i. v. fluids
 - Recovery is fast

Heat cramps:

- Intracellular over hydration and diminished chlorides in the tissues
- Heavy muscular work in high temp and humidity
- Painful and spasmodic contractions of the skeletal muscles esp. legs and arms
- Shift to cool place; plenty of fluids

Heat syncope:

- Milder form: person standing in the sun becomes pale, his blood pressure falls and he collapses suddenly
- Pooling of blood in dilated vessels
- Make patient to lie down, with head slightly down

Prickly heat:

- Hyperactivity of acrine sweat glands
- Blocking of the sweat ducts by epithelial debris due to excessive heat and sweating and poor personal hygiene
- Secondary infection may lead to furunculosis

Preventive measures

- Replacement of the water content lost by body
 - Heavy work under direct sunlight: as much as 1 litre per hour; others involved in sedentary work require half the amount
 - No need for extra salt except unacclimatized persons
- Regulation of work: intervals, regular periods of rest, treatment as soon as signs and symptoms start appearing

- Clothing
- Protective devices
- Work environment: proper ventilation and air conditioning

Effects of cold stress