

Hypothesis- Cow pox offers immunity to Small Pox.

- Is hypothesis true?
- Presence of co- factor Factor\s other than cow pox infection present.....
- Host factors--- only women are protected?
- What percentage of protection does the cow pox offer?

- Whether or not a statistical association exists between a disease and suspected factor
- If it does exist, the Strength of Association

Descriptive study- population

Analytical- Individual

ANALYTICAL EPIDEMIOLOGY

Descriptive studies

Hypothesis-

Prevalence of lung CA is higher among smokers

- Hypothesis is a supposition arrived at from observation or reflection.
- It can be accepted or rejected using the technique of analytical epidemiology.

Cigarette smoking causes lung cancer"

- How many times smokers are <u>at risk of</u> getting lung cancer in comparision with non-smokers?
- Prevalence Rate of lung cancer- what percentage of lung cancer can be <u>attributable to</u> <u>smoking.</u>
- If we prevent smoking from the community- what percentage of decrease in prevalence of lung cancer we can predict?
- The smoking of 30 40 cigarettes per day causes lung cancer in 10 percent of smokers after 20 years of exposure

Descriptive v/s Analytical studies

- Instead of Entire Population Individual subjects are studied.
- However inference is applicable to the population from which subjects are selected.

Case-Control Studies

Alternative names

- Retrospective studies
- Comparison studies
- Case reference studies

Common first approach to test the Hypothesis

Characteristics

- Both exposure and outcome have occurred before the start of the study
- The study proceeds backwards from effect to cause
- It uses a control or comparison group to accept or reject a hypothesis

Design of case control study

Design of case control study

Case	Disease	Disease	Total
control	yes	no	
Exposure	a	b	a+b
No exposure	С	d	c+d
Total	a+c	b+d	a+b+c+d

Process

- People with disease (cases) are selected from amongst the population
- People without the disease (controls) are selected from comparable population and they must be free from disease
- Data are collected
- Occurrence of possible cause is compared between cases and controls
- Analysis of data to find out association between the suspected cause and the effect

Applications

- Suitable for rare diseases
- Suitable for chronic diseases
- Common first approach to test the hypothesis

Basic steps

- Selection of cases and controls
- Matching
- Measurement of exposure
- Analysis

Selection of cases and controls

- Case selection easy
- Define case
- Define diagnostic criteria
- Define eligibility criteria (Incident case/ Prevalent case)
- Source of cases (Hospital / Population)

Selection of cases and controls e.g.- DM

- Define case- at what bd. sugar level\ urine sugar
- Define diagnostic criteria- RBs\fasting\GTT
- Define eligibility criteria (Incident case/ Prevalent case)
- Source of cases (Hospital / Population)

Selection of cases and controls Control selection- Difficult

- -Hospital controls
- -Relatives
- -Neighborhood (Residence/ Workplace)
- -General population
- -Control from more than one source

How many controls

- At least 1: 1
- If few cases- more than one control study
- "Choice of controls and cases must not be influenced by exposure status"

Basic steps

- Selection of cases and controls
- Matching
- Measurement of exposure
- Analysis

Asbestos-→CA lung

Case

- Mean age- 50 years
- 80% males
- 60% -smokers

Control group

- Mean age- 30 years
- 50% males
- 10% -smokers

Matching

Process by which we select controls in such a way that they are similar to cases with regard to variables which are known to influence the outcome of disease and subsequently confound the results

Confounding factor

- One which is associated both with exposure and disease and is distributed unequally in study and control group
- One that, although associated with exposure under investigation, is itself independently a risk factor for disease
- E.g.- Age\Sex\ Marital status.....

Matching procedure

• Group matching

• Pairs

Basic steps

- Selection of cases and controls
- Matching
- Measurement of exposure
- Analysis

% of smokers in case vs. control gp
Average duration of smoking
Average- no. of cigarette/ day.....

Measurement of exposure

- Occurred or not occurred
- Duration, severity and frequency
- Measured in same manner in both cases and controls
- Rule out any possible bias

Basic steps

- Selection of cases and controls
- Matching
- Measurement of exposure
- Analysis

Analysis

- Exposure rate
- Estimation of exposure risk
- To ascertain the association- Test of significance SE of proportions and means
- Association does not imply causation

Case	Disease	Disease	Total
control	yes	no	
Exposure	a	b	a+b
No exposure	С	d	c+d
Total	a+c	b+d	a+b+c+d
	(Diseased)	(Healthy)	

Case control	Disease	Disease	Total
	yes	no	
Exposure	а	b	a+b
No exposure	С	d	c+d
Total	a+c	b+d	a+b+c+d
	(Diseased)	(Healthy)	

Exposure rate amongst cases= a/a+c

Exposure rate amongst controls= b/b+d

Odds ratio (Risk Ratio/ Cross Product ratio)

- Measure of strength of association and closely related to RR
- OR = ad / bc (Key parameter in case control study)

Case control	Disease	Disease	Total
	yes	no	
Exposure	а	b	a+b
No exposure	С	d	c+d
Total	a+c	b+d	a+b+c+d
	(Diseased)	(Healthy)	

OR = ad / bc (Key parameter in case control study)

- Out of 300 study subjects-
- Cases- 100, -- 50 are smokers
- Controls- 200 --- 10 are smokers

Case	Disease	Disease	Total
control	yes	no	
Smoker	50	10	60
Non smoker	50	90	140
Total	100	200	300

Case control	Disease	Disease	Total
	yes	no	
Smoker	50	10	60
Non smoker	50	90	140
Total	100	200	300

OR= ad/bc = <u>50 X 90</u> 50 X 10

- OR= ad/bc
 - = <u>50 X 90</u>
 - 50 X 10
 - = 9
- Smokers are at 9 times higher risk of getting lung cancer than non smoker.

-Disease being investigated is relatively rare

- -Case must be representative of those who have the disease
- -Controls must be representative of those who do not have the disease

Types of bias

- Bias due to confounding
- Memory or recall bias
- Selection bias
- Berksonian bias
- Interviewer's bias

Advantages

- Easy, inexpensive, relatively quick
- Fewer subjects
- Suitable for rare diseases
- No risk for subjects
- Simultaneous study of multiple etiological factors
- Risk factor can be identified
- No attrition problem
- Ethical problems are minimum
- Easy analysis

Advantages

- Easy, inexpensive, relatively quick
- Fewer subjects
- Suitable for rare diseases
- No risk for subjects
- Simultaneous study of multiple etiological factors
- Risk factor can be identified
- No attrition problem
- Ethical problems are minimum
- Easy analysis

Disadvantages

- Problem of bias specially recall bias
- Selection of controls is difficult
- Incidence can not be calculated
- Only estimate of RR
- Only disease under study is studied
- Only association is measured
- Not suitable for evaluation of therapy or prophylaxis

THANK YOU