Blood Glucose Regulation

By Dr Jemil Makadia

Importance

- Blood concentration of glucose is regulated within narrow limits as hypoglycemia and hyperglycemia are associated with significant morbidity and mortality.
- Nervous system and RBC exclusively depend on glucose as a source of energy
- It reflects the net balance of availability and utilization of glucose by the cell and tissues of the body
- Renal threshold for glucose is 180 mg/dl
- Sudden decrease in blood glucose level leads to convulsion
- Much lower conc can be tolerated if hypoglycemia develops slowly enough for adaptation to occur

Normal Blood glucose level

mg/dl	Normal	IGT	DM
Fasting	70-110	110-126	>126
PP2BS	<140	140-200	>200
Random	<200	_	_

Role of Liver

- It plays central role
- Blood from adipose tissue, intestine, spleen, pancreas are going directly to the liver via portal circulation
- Various metabolic pathways occurs in liver like gluconeogenesis, glycogen synthesis and glycogenolysis

Mechanisms

- Several mechanisms operate to regulate the blood glucose level
 - Metabolic
 - Liver
 - Extrahepatic tissue
 - Hormonal
 - Insulin
 - Glucagon
 - Epinephrine and NA
 - Growth hormone
 - Glucocorticoids

Metabolic regulation

- Liver and Extrahepatic tissue
 - GLUT-2
 - Present in liver
 - Insulin independent
 - GLUT-4
 - Present in extrahepatic tissue
 - Insulin dependent

- Hexokinase/Glucokinase
 - Hexokinase
 - Low Km
 - All extrahepatic tissue
 - Active all the time
 - Glucokinase
 - High Km
 - Liver
 - Active after meal
- Liver has net uptake of glucose in high blood glucose level but it is net producer of glucose in low and normal glucose level

Hormonal regulation

- Hormones decrease blood glucose level
 - Insulin
- Hormones increase blood glucose level
 - Glucagon
 - Adrenaline
 - NA
 - Growth hormone
 - Glucocorticoids

• Insulin

- From β -cell of pancreas
- Increase in glucose level will stimulate insulin
- GLUT-2
- Increases- Glycolysis, TCA
- Liver
 - Increases
 - FA synthesis
 - Glycogen synthesis
 - Protein synthesis
 - Decreases
 - Ketogenesis
 - Gluconeogenesis

- Adipose tissue
 - Increases
 - Glucose uptake
 - FA synthesis
 - Decreases
 - Lipolysis
- Muscles
 - Increases
 - Glucose uptake
 - Glycogen synthesis
 - Protein synthesis

Mechanism of insulin secretion

Increase Ca++ influx Exocytosis of Insulin

- Concentration of insulin in blood parallels that of blood glucose
- Release of inulin also increase by
 - Amino acids
 - Free FA
 - Ketone bodies
 - Glucagon
 - Secretin
 - Sulfonylurea drugs

- Insulin does not affect glucose uptake in the liver but enhance long term uptake by actions on enzymes required for glycolysis, glycogen synthesis and gluconeogenesis
- Cytokines secreted by macrophages infiltrating adipose tissue along with glucocorticoids secreted by adipose tissue have insulin antagonistic effect which explain insulin resistance in obese people.

•

Glucagon

- Opposes the actions of insulin
- \bullet Secreted by $\alpha\text{-cell}$ of pancreas, act via cAMP
- Effect on liver phosphorylase but not on muscle
- Increases
 - Glycogenolysis
 - Gluconeogenesis
 - Ketogenesis
 - Lipolysis
- Decreases
 - Glycolysis
 - TCA cycle
 - Glycogen synthesis

• Epinephrine and norepinephrine

- Secreted by adrenal medulla
- Result of stressful stimuli (fear, excitement, hemorrhage, hypoxia, hypoglycemia)
- Inhibit insulin release
- Promote hyperglycemia by glycogenolysis in liver and muscle

Growth hormone

- Stimulated by hypoglycemia
- Promotes FA mobilization from adipose tissue

Glucocorticoids

- Increases gluconeogenesis from amino acids
- Decrease glucose utilization by extrahepatic tissue

Muscle glycogen in fasting condition

- Lactic acid (cori's cycle) and Glucose-Alanine cycle
 - In fasting condition alanine output from muscle will increases
 - Muscle glycogen maintain blood glucose level in fasting condition

Stages of maintenance of blood glucose

Absorptive stages

- Start from feeding and last for 3-4 hrs after meal
- Dietary glucose goes to liver and then to most tissue
- Excess of glucose is stored as glycogen in liver and muscle

Post absorptive phase

- Will last for 16-18 hrs after absorption
- Liver glycogenolysis becomes the main source of glucose
- Muscle uses its glycogen for energy
- Gluconeogenesis will start after 24 hrs of fasting

Starvation

- After 24 hrs, gluconeogenesis is the main source of glucose
- FA from adipose tissue becomes fuel for most tissue
- Lactate and glycerol ae reutilized for gluconeogenesis
- High rate of hepatic gluconeogenesis will last for few days in early starvation

Prolonged starvation

- After 2-3 days to 3 weeks (intermediate starvation)
 - Hepatic gluconeogenesis decreases
 - Gluconeogenesis in kidney will start increasing
 - Fat as a source of energy for most of the tissues
 - Proteins in muscle produce glucogenic amino acids to produce glucose
- If starvation more than 3weeks known as prolonged starvation
 - Lipid store depleted
 - Complications and death may occurs

Thank You