RESPIRATORY TRACT INFECTIONS

Dr. Tanmay Mehta

Learning objectives

At the end of the session, the students will be able to

- Classify and define of respiratory tract infections
- Describe aetiopathogenesis
- Describe laboratory diagnosis and treatment of respiratory tract infections

RESPIRATORY TRACT INFECTIONS

- Upper Respiratory Tract Infections
- Infections of airway above glottis or vocal cords
- Tonsillitis, pharyngitis, laryngitis, sinusitis, otitis media, and rhinitis
- Symptoms cough, sore throat, running nose, nasal congestion, headache, low-grade fever, facial pressure and sneezing

Rhinitis or common cold

- Mostly caused by viruses:
- Rhinovirus
- Coronavirus
- Adenovirus
- Influenza virus
- Parainfluenza virus
- Human metapneumovirus
- Respiratory syncytial virus

Sinusitis

- **Symptoms:** Headache/facial pain, nasal mucus, Plugged nose
- Agents of acute sinusitis:
- Viruses (most common cause): Rhinoviruses, Influenza viruses, Parainfluenza viruses
- **Bacterial agents:** *Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas* and other gram- neg- ative bacilli (nosocomial sinusitis)
- Agents of chronic sinusitis: Obligate anaerobes, *Staphylococcus aureus*

Pharyngitis (sore throat), and tonsillitis

- Symptoms:
- Pharynx and/or tonsils become inflamed, red, swollen, and show exudate, and sometimes a membrane is formed
- Viruses: (most common cause) Influenza virus, Parainfluenza virus, Coxsackievirus A, Rhinovirus, Coronavirus, Epstein-Barr virus, Adenoviruses

Pharyngitis (sore throat), and tonsillitis

- Bacteria: Streptococcus pyogenes (most common bacterial cause), Streptococcus groups C and G, Arcanobacterium species, Corynebacterium diphtheriae and C. ulcerans, Mycoplasma pneumoniae
- Vincent angina *Treponema vincentii & Leptotrichia buccalis*
- Fungal: Candida albicans

- Symptoms: Hoarseness of voice, Lowering and deepening of voice
- Mostly viral agents: Influenza virus, Parainfluenza virus, Rhinovirus, Adenovirus, Coronavirus, Human metapneumovirus
- If membrane or exudate present: Streptococcus pyogenes, C. diphtheriae, Epstein-Barr virus

Laryngotracheobronchitis (or croup)

- Age—Children, <3 years age
- Symptoms:
- Inspiratory stridor, Hoarseness, Fever
- Cough (harsh, barking non- productive)
- Agents:
- Parainfluenza virus (most common)
- Influenza virus
- Respiratory syncytial virus
- Adenoviruses

Epiglottis

- Edema and inflammation of epiglottis and soft tissue above vocal cords
- Age: children 2–6 years
- **Symptoms:** Fever, Difficulty in swallowing, Inspiratory stridor
- Most common agent: Haemophilus influenzae type b

Lower Respiratory Tract Infection

- Pneumonia
- Inflammation of lungs
- 1. Community acquired—patients acquire the organisms in the community
- 2. Hospital acquired— patients acquire the organisms in the hospital setting.

Community-acquired Pneumonia (CAP)

- Agents: Streptococcus pneumoniae followed by Mycoplasma pneumoniae
- CURB65 scoring system To predict prognosis of CAP
- Score >1 \rightarrow patient should be hospitalized
- Else the treatment can be given on outpatient basis

Agents of Community-acquired Pneumonia (CAP)

- No co-morbidity:
- Streptococcus pneumoniae (most common)
- Atypical pathogens:
- Chlamydophila pneumoniae and C. psittaci
- Legionella and Mycoplasma
- Coxiella burnetii (Q fever)
- Viral pneumonia (influenza, adenovirus, parainfluenza, RSV)

Agents of Community-acquired Pneumonia (CAP)

- Associated with Co-morbidity:
- Alcoholism: S. pneumoniae, H. influenzae
- COPD: H. influenzae, M. catarrhalis, S. pneumoniae
- Post-CVA-aspiration: *S. pneumoniae*
- Post-obstruction of bronchi: *pneumoniae*, anaerobes
- Post-influenza: *S. pneumoniae*, S.*aureus*

Community-acquired Pneumonia (CAP)

- CURB-65score
- C (Confusion) = 1 point
- U (blood urea nitrogen >19 mg/dL) = 1 point
- R (respiratory rate >30 min) = 1 point
- B (BP <90/60) = 1 point
- 65 (Age ≥65 years) = 1 point
- Higher the score, greater is the mortality
- If the score ≤1, outpatient therapy is indicated If the score >1, patient should be hospitalized

Hospital-acquired Pneumonia (hAP)

- Hospitalized patients have increased risk of developing pneumonia; most of which are ventilatorassociated pneumonia
- VAP can be clinically diagnosed by Clinical Pulmonary Infection (CPIS)
- Likelihood of VAP is higher when total CPIS is >6

Clinical Pulmonary Infection Score (CPIS)

Parameter(s)	Score 0
Temperature (°C)	≥36.5°C and ≤38.4°C
Leukocytosis	≥4000 and ≤11,000
Tracheal aspirate	None
Oxygenation (PaO2/FiO2 mm Hg)	>250 or ARDS
Chest radiograph	No opacity
Progressive radiological progression	No radiological progression
Culture of tracheal aspirate	Pathogenic bacteria Light or no growth
Culture-gram stain correlation	Different morphology than Gram stain

Clinical Pulmonary Infection Score (CPIS)

Score 1	Score 2
≥38.5°C and ≤38.9°C	≥390C and ≤36.40C
<4000 and >12000	
Non-purulent	Purulent
	≤250 and no ARDS
Diffuse (patchy) opacity	Localized opacity
	Radiological progression
Pathogenic bacteria Moderate or	
heavy growth	
Same morphology as Gram stain	

Hospital-acquired Pneumonia (hAP)

- Bacterial agents:
- Gram-negative bacilli (most common)
 - MDR non-fermenters (*Pseudomonas* and *Acinetobacter*)
 - MDR Enterobacteriaceae (E. coli, Klebsiella and Enterobacter)
- *Staphylococcus aureus* (both MRSA and MSSA)
- *S. pneumoniae* (rarely, in early stage)
- Viral agents:
- Influenza, adenovirus, parainfluenza, RSV

linical Manifestations of Pneumonia

- Fever, chills, chest pain and cough
- Based on area of lungs involved, and type of cough produced
- Lobar pneumonia infecting lung parenchyma (alveoli)
- Consolidation and productive cough with purulent sputum
- Mostly caused by pyogenic organisms :
 - Pneumococcus
 - Haemophilus influenzae
 - Staphylococcus aureus
 - Gram-negative bacilli.

Interstitial or atypical pneumonia

- Infection occurs in interstitial space of lungs
- Cough is characteristically non-productive
- Caused by :
- Chlamydophila pneumoniae
- Mycoplasma pneumoniae
- Viral pneumonia
- Legionella species

Bronchitis

- Inflammation of bronchus, which occurs either as an extension of upper respiratory tract infection such as influenza or may be caused directly by bacterial agents such as *Bordetella*.
- **Common symptoms** fever, cough, sputum production, and rarely croup- like features

Bronchitis

- Bacterial agents:
- B. pertussis
- B. parapertussis
- Mycoplasma pneumoniae
- Chlamydophila pneumoniae
- Viral agents:
- Influenza viruses
- Adenoviruses
- Rhinoviruses
- Coronaviruses

Bronchiolitis

- Inflammation of the smaller airways (bronchioles)
- It presents as an acute viral infection that primarily occurs in children less than 2 year
- **Symptoms:** Acute onset of wheeze, dyspnea, cough, rhinorrhea, and respiratory distress
- Respiratory syncytial viruses account for 40–80%

Bronchiolitis

- Viral agents:
- Respiratory syncytial viruses
- Parainfluenza viruses
- Rhinoviruses
- Influenza viruses
- Adenoviruses
- Enterovirus
- Human metapneumovirus

Laboratory Diagnosis

- Specimen Collection
- For URTI:
 - Throat swab: Two swabs should be collected, one for direct examination, other one for culture
 - A part of the membrane, if present
 - Nasopharyngeal aspirate for viral diagnosis or for *B.pertussis*
- For LRTI: Sputum, induced sputum, tracheal aspirate, bronchoalveolar lavage (BAL)

Microscopy

- Albert staining metachromatic granules in the ends of the bacilli → of C. diphtheriae
- Gram staining
- Detect the quality of the sputum
- Pus cells >25/low power field and epithelial cells <5/low power field → good quality sputum
- Acid fast staining M. tuberculosis
- GMS stain Pneumocystis jirovecii
- Immunofluorescence microscopy of nasopharyngeal aspirate

Culture

- For bacteriological culture: Blood agar, chocolate agar and MacConkey agar
- For isolation of *C. diphtheriae*: Loeffler's serum slope and potassium tellurite agar
- For M. tuberculosis: LJ medium and incubated for up to 6–8 weeks
- For fungal pathogen isolation: Sabouraud dextrose agar
- Viral Appropriate cell lines

Identification of agents of Lobar Pneumonia

Agents of pneumonia	Direct demonstration in sputum	Culture identification
Streptococcus pneumoniae	Pus cells >25/LPF and epithelial cells <5/LPF gram-positive cocci in pair, lanceolate shaped	Alfa hemolytic, draughtsman-shaped colonies on blood agar Sensitive to optochin Bile soluble, ferments inulin
Haemophilus influenzae	Pus cells >25/LPF and epithelial cells <5/LPF Pleomorphic gram- negative bacilli	Satellitism on blood agar with <i>S. aureus</i> streak line

Identification of agents of Lobar Pneumonia

Agents of	Direct demonstration in	Culture identification	
pneumonia	sputum		
Staphylococcus	Pus cells >25/LPF and	BA- golden yellow	
aureus	epithelial cells <5/LPF	hemolytic colonies	
	gram-positive cocci in	Catalase positive,	
	clusters	coagulase positive	
Gram-negative bacilli	Pus cells >25/LPF and	Identification is based on:	
E. coli, Klebsiella,	epithelial cells <5/LPF	Growth on MacConkey	
Pseudomonas, etc.)	gram-negative bacilli	agar (LF or NLF colonies)	
		and	
		 Biochemical reactions 	
		(ICUT: indole, citrate,	
		urease, TSI)	

Identification of agents of Interstitial Pneumonia

Agents of	Direct demonstration in sputum	Culture identification
pneumonia		
Chlamydophila	Direct immunofluorescence test	Serology-antibody detection
pneumoniae	Antigen detection by enzyme	by
	immunoassay Nucleic acid	- CFT using LPS antigen
	amplification test (NAAT) detecting	- ELISA using recombinant LPS
	specific genes	antigen
		- Micro-IF test using outer
		membrane protein antigen
Legionella	Pus cells >25/LPF and epithelial	Growth on BCYE medium
pneumophila	cells <5/LPF Detection of specific	
	antigen in sputum, urine	

Identification of agents of Interstitial Pneumonia

Agents of pneumonia	Direct demonstration in sputum	Culture identification
Mycoplasma pneumoniae	Direct immunofluorescence test Capture ELISA-detecting antigen (P1 adhesin) PCR targeting P1 adhesin gene	Culture-fried egg colonies on PPLO agar Antibody detection - Non-specific test (cold agglutination test) - Specific test (e.g. ELISA)
Viral pneumonia	Detection of specific viral antigen in sputum Detection of specific viral genes in sputum (PCR)	

Identification

- Serology:
- Detection of antibodies:
- *Mycoplasma*: Cold agglutination test, complement fixation test (CFT) and ELISA formats are available
- Chlamydial antibodies in serum: Micro-IF and CFT
- Molecular Test

TREATMENT

- Community-acquired pneumonia (CAP)
- Empiric regimen is determined by presence of comorbidity and prediction of prognosis by CURB-65 scoring system
- CAP, hospitalized (if CURB65 score >1):
- IV ceftriaxone plus azithromycin or
- IV levofloxacin
- Add vancomycin if CA-MRSA suspected

- CAP, outpatient (if CURB-65 score ≤1):
- If no comorbidity present: Oral azithromycin or azithromycin plus amoxyclav.
- If comorbidity present: Oral levofloxacin
- Hospital-acquired pneumonia (HAP)
- **Empirical therapy**: comprises of both gram-negative (e.g. piperacillin-tazobactam or meropenem) *plus* gram-positive coverage (e.g. vancomycin).
- **Definitive therapy**: The empirical treatment should be tailored based on the organism isolated and its