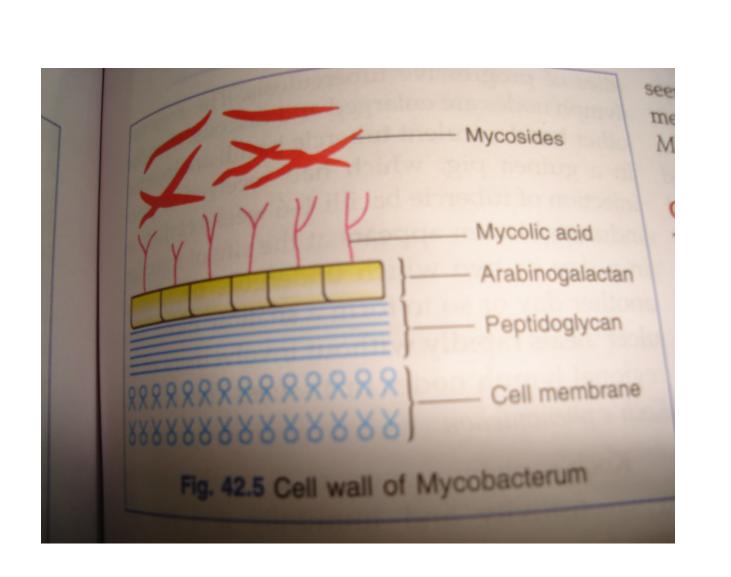

MYCOBACTERIUM

Characteristics of Genus Mycobacterium


- Myco = Fungus
- Aerobic
- Nonmotile
- Nonsporing
- Slow growing
- Acid fast

- What is acid fastness?
- Why?

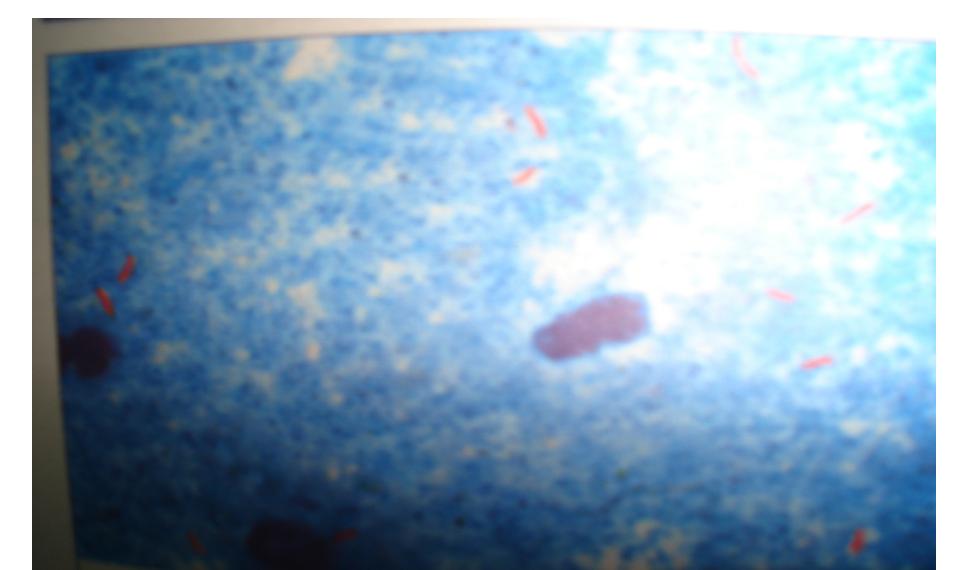
Unusual cell wall structure

Resistant to environmental stress such as drying, to acid & alkali, to antibodies & complement

CLASSIFICATION OF MYCOBACTERIA

GROUP-I: Obligate pathogens

- 1. M. tuberculosis complex
 - M. tuberculosis (human tubercle bacillus)
 - M. bovis (bovine tubercle bacillus)
 - M. africanum
 - 2. M. leprae


GROUP-II: Opportunistic pathogens (MOTT or NTM)

GROUP-III: Saprophytic Mycobacteria

- M. smegmatis
- M. phlei
- M. stercoris
- M. butyricum

M. tuberculosis

- Acid fast rods 2-3µ x 0.3µ
- Alcohol fast
- Straight or slightly curved with rounded ends
- Arranged singly, in pair or clumps, sometimes branching & filamentous forms
- Gram positive
- Staining: 1) Z.N. stain (bacilli appear red against blue or green background)
 2) Fluorescent stain

Culture media

- 1. Solid media
 - usually used for cultivation

Containing egg – Lowenstein-Jensen medium

Dorset egg medium

Petragnini medium

blood - Tarshis medium

potato – Pawlosky's medium

✓ Lowenstein-Jensen medium – IUAT L.J. (International Union Against Tuberculosis) is most commonly used laboratory media.

2. Liquid media

- usually used for sensitivity testing, chemical analysis & preparation of antigens & vaccines
 - Dubo's medium
 - Middle brook's medium
 - Proskaur's medium
 - Beck's medium
 - Sula's and Sauton's medium

Growth characteristics

- Obligate aerobe
- Slow growing takes 2-8 wks to grow
- Generation time 14-15 hours
- Optimum temp. 37° C (20°-40° C)
- Optimum pH 7.0 (6.4-7.0)

Colony on solid media

- dry, rough, raised, wrinkled, irregular, creamy white (rough, buff & tough)
- luxuriant growth (eugonic growth)
- growth is improved with addition of 0.5% glycerol
- does not grow on medium with P-nitro benzoic acid

Growth in liquid media

 growth begins at the bottom, creeps up the sides & forms a prominent surface pellicle which may extend along the sides above the medium

Rapid culture methods

- BACTEC-460 System
 - -Rapid
 - more sensitive than routine culture methods
 - uses special broth (liquid media) with radiometric growth detection
 - ¹⁴C labeled substrate is used & ¹⁴CO₂ evolved due to bacterial metabolism is measured
- Disadvantages cost of instrument
 - inability to observe colony morph.
 - need for disposal of radioactive sub

Rapid culture methods

- BACTEC 9000MB and BACTEC MGIT use fluorescence quenching system.
- BacT/ALERT uses a colorimetric CO2 sensor in each bottle to detect growth.

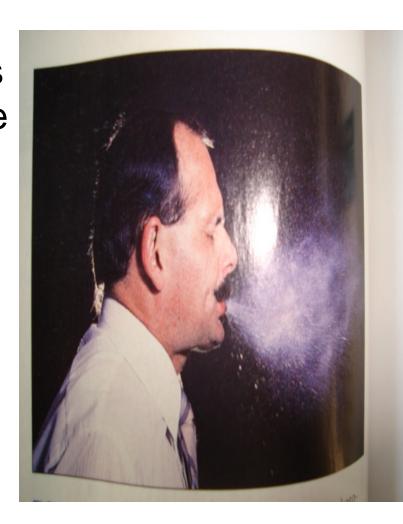
Biochemical reactions

- ✓ Niacin test Positive
- ✓ Nitrate reduction test Positive
 - Neutral red test Positive
 - Aryl suphatase test Negative
 - Amidase test Positive
 - Peroxidase Positive
 - Catalase weakly positive
- ✓ Susceptibility to pyrazinamide
- Resistant to TCH (thiophen 2-carboxylic acid hydrazide) -

Differences between M. tuberculosis & M. bovis

Characteristics	M. tuberculosis	M. bovis
Morphology	Straight or slightly curved	Straight, short & stout
AFB staining	Uniform or granular	Uniform
C/C	-Obligate aerobe -luxuriant growth -dry, rough, raised, creamy white -not easily emulsifiable	-microaerophilic -grows sparsely -moist, smooth, flat, white -easily emulsifiable

Characteristics	M. tuberculosis	M. bovis
Na pyruvate 0.5% glycerol	Helps in growth Improve growth	Helps in growth Impair growth
Biochemical reaction Niacin test NRT	Positive Positive	Negative Negative
Sensitivity to pyrazinamide	Sensitive	Resistant
Sensitivity to TCH	Resistant	Sensitive


Sensitivity to physical & chemical agents

- Mycobacteria remain viable
 - In sputum for 20-30 hours
 - In droplet nuclei for 8-10 days
 - In cultures for 6-8 months at room temp. & for 2 years at -20°C
- Sensitive to formaldehyde, glutaraldehyde & ethanol
- Killed in 2 hours after exposure to direct sunlight
 & in 15-20 min. by heating at 60°C

Pathogenesis

- Source of infection open case of pulmonary tuberculosis

 it infects on an average some
 contacts before death or cure in India.
- Mode of infection
 - Inhalation of aerosolised bacilli contained in droplet nuclei of expectorated sputum
 - Ingestion, through infected milk
 - 3) Inoculation (rare)

Host factors

- URT ciliated epithelium
 - mucus secretion
 - cough reflex
- LRT alveolar macrophage Genetic susceptibility

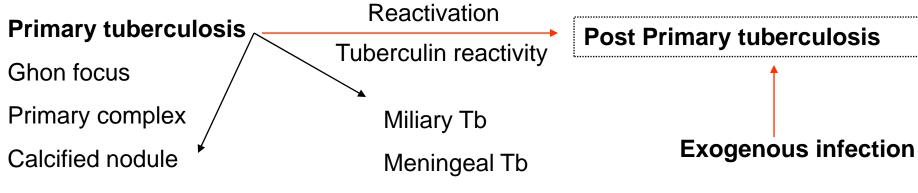
Age

Immunocompetence

Stress

Nutrition


Coexisting illness


Microbial factors

- Number of bacilli
- Virulence of bacilli

- Do not contain or secrete toxin
- Ability to survive & multiply in macrophages

- Pathogenesis, allergy and immunity influence in the infection.
- Tenth of infected develop active TB.
- Cell-mediated immunity –tuberculosis
 Delayed type hypersensitivity & resistance to infection identified by Koch Koch phenomenon.

Disseminated Tb

Laboratory diagnosis

Specimens In Pulmonary tuberculosis

- sputum Spot and early morning sample
- laryngeal swab
- bronchial washings
- gastric lavage

In renal tuberculosis

- urine - 3 consecutive early morning

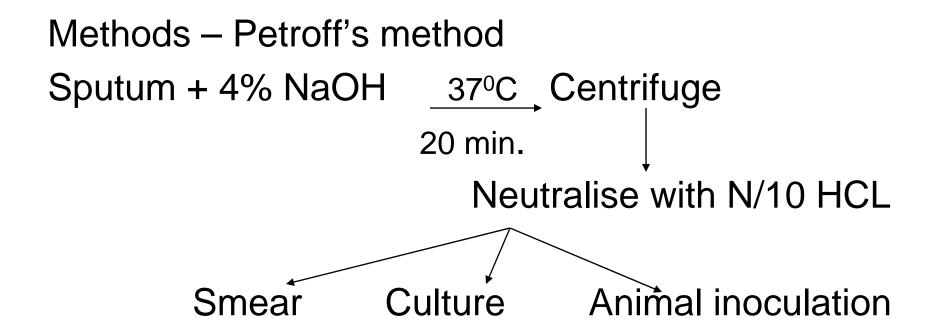
In tuberculous meningitis

- c.s.f.

Other specimen depending on site involvement

 ascitic fluid, pleural fluid, joint aspiration, pus aspirated from cold abscess, lymph node biopsy, tissue biopsy

- 1. Demonstration of AFB in specimens
- 2. Culture
- 3. Animal inoculation
- 4. Rapid methods
- 5. Serology
- 6. Skin test


Demonstration of AFB in specimens

Smear – staining – Z.N. methodFluorescent staining

- Smear Reporting in case of sputum specimen No. of AFB seen in OIF Interpretation 100 AFB not seen 1-9/100 field 100 scanty 10-99/100 field 100 1+ 1-10/field 50 2+ >10/ field 20 fields 3+

Concentration methods

- To concentrate the AFB
- To kill contaminating or commensal organisms

Culture

- very sensitive (10-100 bacilli/ml)
- longer incubation required
 Concentrated specimen

IUAT-L.J. (International Union Against Tuberculosis) 37°C see for growth twice weekly

Identify colony, Microscopy, Biochemical reaction (Slow growing, nonpigmented, niacin positive AFB)

- Negative report is given if no growth occurs after 8-12 weeks.
- Rapid culture methods BACTEC-460

Animal inoculation

- very sensitive
- loss of animal
- not used
- Guinea pig

Nucleic acid technology – PCR & LCR, Typing methods.

Serology – detection of Tb-IgM & IgG

- detection of Tb-Ag

Other tests – X-ray

- E.S.R

Extra pulmonary tuberculosis

- C.S.F. spider web clot on standing
 - Lymphocytic leucocytosis

Pleural effusion & other exudates

- collected with citrate
- centrifuge microscopy, culture & animal inoculation

Skin test

- Tuberculin test delayed hypersensitivity
 - protein purified derivative

Methods

- Mantoux method (Intradermal injection of PPD by tuberculin syringe)
- Heaf method (PPD is delivered through spring loaded gun which fires six prongs into the skin)

Uses

- Epidemiologically to measure prevalence of tuberculous infection in community
- Diagnostically in young children with suspected clinical infection
- In immunisation campaigns in order to separate the positive and negative reactors and to assess the response to vaccination by B.C.G. vaccination

Limitations

- Failure to distinguish active disease from quiescent infections and past BCG vaccination.
- Exposure to various mycobacteria in the environment may induce low level of tuberculin reactivity.

Prophylaxis

- General measures
 - adequate nutrition
 - good housing
 - health education
 - early detection & treatment of cases
 chemoprophylaxis
 - immunoprophylaxis B.C.G. vaccine (Bacille Calmette Guerin)
- To whom B.C.G. is not given
 - -after the age of 2 years
 - -infants & children with active HIV disease
 - -babies born to mothers with AFB positive sputum

THANK YOU