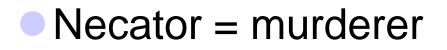
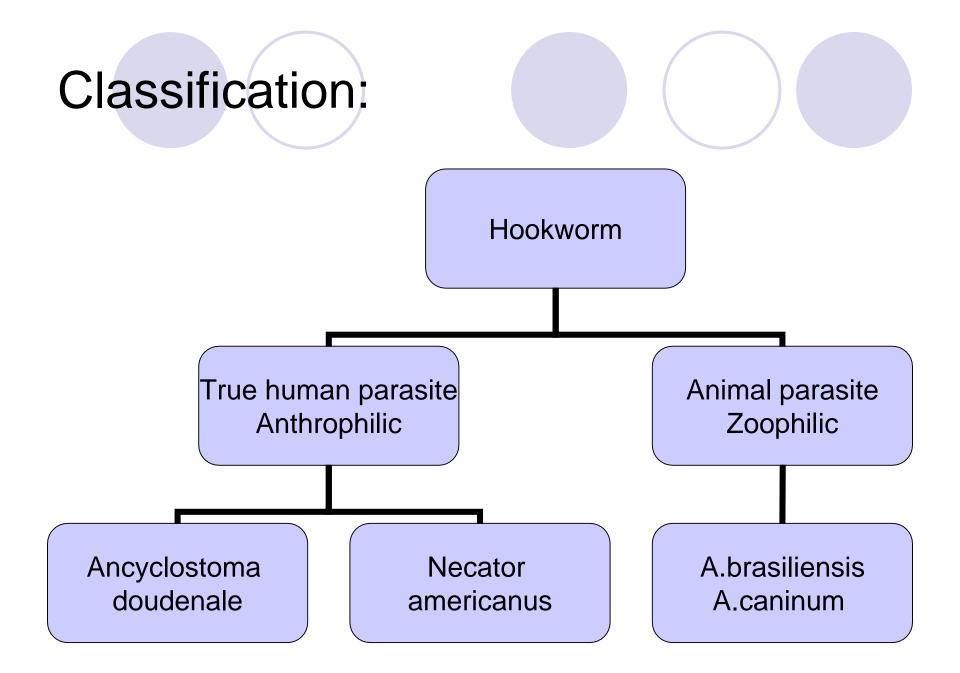

Adults in intestinal mucosa




Hook worm

What's there in name...Hookworm

The old world = Ancylostoma doudenale
 Ancylos = hooked
 Stoma = mouth

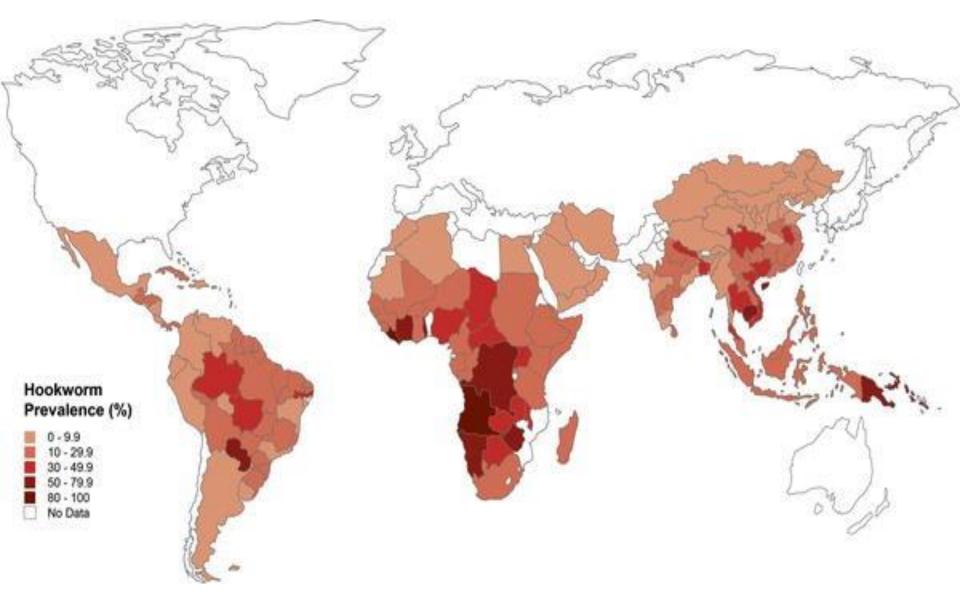
The new world = Necator americanus American hookworm
 American murderer

Geographical distribution

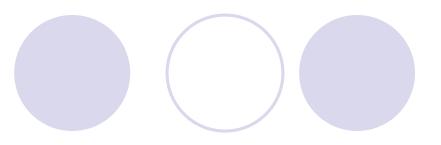
Infection is prevalent all over the world

Necator –

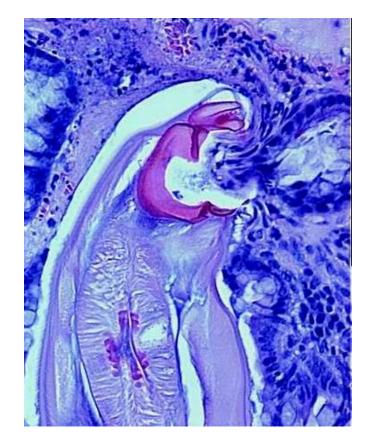
- Opredominantly found in USA
- Also found in other parts of world


Ancylostoma –

- not found in USA
- far more common than Necator

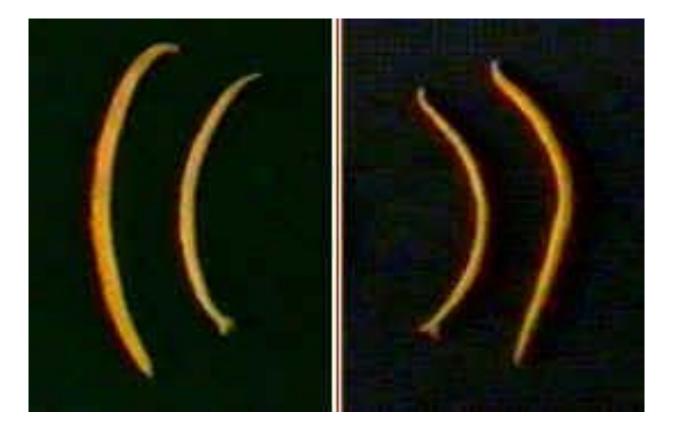

In India –

- A.doudenale Punjab & U.P (More common in Northern India)
- Necator Throughout India (More common in southern India)


Hookworm prevalence

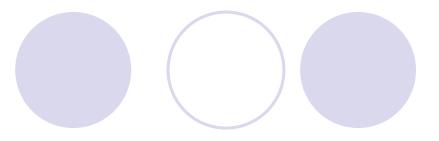
Habitat

Adult worm lives in small intestine of man
 Jejunum
 Less common in duodenum
 Rarely in ileum


Morphology

Adult worm :

- OPale pink or greyish white
- curved cylindrical worm with concavity on dorsal aspect
- Size : Female up to 15 mm, Male- up to 10 mm
- Anterior end bend slightly dorsally hence called hook worm, bend is in same direction as general body curvature



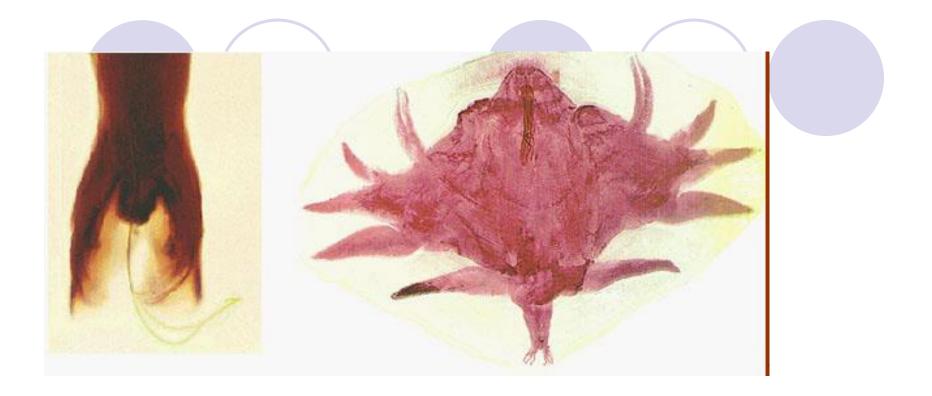
Differences between two hookworms



Adults of A. duodenale Adults of N. americanus

Morphology



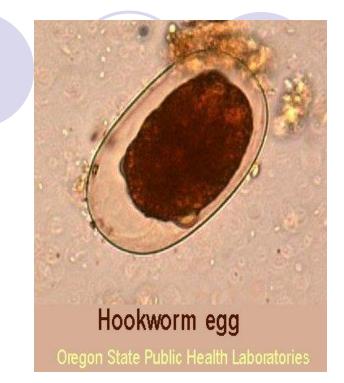

 Mouth : large and possess 4 hook like teeth on ventral surface & 2 smaller knob like teeth on dorsal surface, mouth opens dorsally

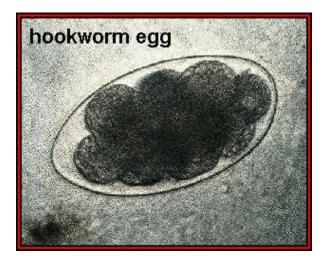
Male

- Posterior end is expanded (like umbrella) into a copulatory bursa supported by fleshy rays
- Copulatory bursa
 - 2 lateral lobes number of rays - 12
 - 1 dorsal lobe not split number of ray - 1
- Total number of rays 13
- 2 copulatory spicules project from bursa, cloaca opens in bursa at posterior end

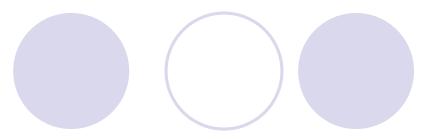
◆Left picture: Copulatory bursa and spines of N. americanus(a side view);

•Right picture: copulatory bursa of A. duodenale(a top view)

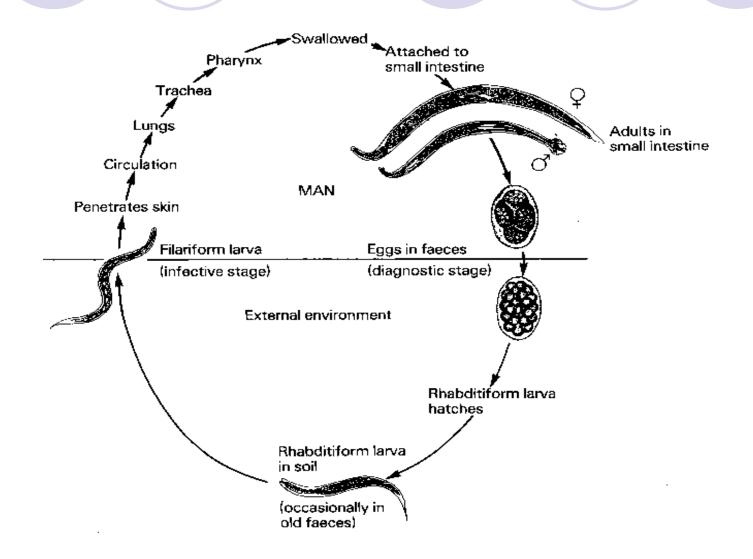

Female


- Posterior end is cone shaped with sub terminal anus situated ventrally
- Vulva opens ventrally at junction of middle
 & posterior third of body
- During copulation worm assumes "Y" shaped position

	Male	Female
Size	Smaller	Larger
	8-10mm × 0.45 mm	10-15 mm ×0.6 mm
Posterior end	Expanded in an umbrella like fashion	tapering
Genital pore	Posteriorly, opens with cloaca	At junction of posterior and middle third of body


Eggs

- Oval or elliptical 65 μ × 40 μ
- Colorless (not bile stained)
- Surrounded by a thin transparent shell
- Contains a segmented ovum with 4 blastomeres
- Clear space between egg shell & segmented ovum
- Floats in saturated salt solution


Life Cycle

- 1. Final host: man
- 2. Inf. Stage: Filariform larva
- 3. Portal of entry : by penetration of skin
- 4. Mode of infection : walking bare foot on faecally contaminated soil
- 5. Site of inhabitation: small intestine
- 6. Life span: Ad 15years, Na 3-7years
- 7. Blood-lung migration:

skin, cavum, right heart, lungs

Life cycle of hookworm

Site of entry of larva

- Thin skin between toes
- Dorsum of foot
- Inner side of sole
- In case of agricultural workers, skin of hand

Moulting in hookworm

- Larvae moult 4 times
- In soil
 - Moult twice Rhabditiform larvae to acquire mouth parts suited for penetration
- In pharynx 3rd moulting occurs to get temporary buccal capsule
- 4th moulting takes place in jejunum to acquire regular buccal cavity

Clinical syndromes

- Effects due to migrating larva
- Effects due to adult worm
 - OSeverity of symptoms depends on worm burden
 - Clinical manifestation are light if < 5 egg/mg of faeces
 - Significant anemia develops- if > 20 eggs/mg of faeces

Effects due to migrating larva

Ground itch

- At site of penetration larva gives rise to severe itching
- An erythematous papular rash develops which become vesicular
- Scratching may lead to secondary bacterial infection
- Condition is called as "Ground itch" or "ancyclostomal dermatitis"
- ○Self limiting state lasts for 2-4 weeks only

Loeffler's syndrome :

 Larvae when break out from pulmonary capillaries – enter alveoli, minute hemorrhages occur – with secondary infiltrate

- Clinical pneumonitis develops with massive infection
- Olt is more common with ascariasis

Effects due to adult worm

Acute infection

 Gastro intestinal symptoms – abdominal pain, nausea, vomiting and diarrhea

Chronic infection

 Hypochromic microcytic anemia – Iron deficiency anemia

 Symptoms of anemia includes – hyperdynamic circulation, pallor, retardation of growth, listlessness, edema of subcutaneous tissue and effusion in serous cavities

Causes of anemia

- Adult worm in jejunum -suck blood by prominent buccal capsule, esophagus has got pumping action sucking blood continuously
- They frequently migrate in intestine in search of new sites for blood sucking, leaving behind small bleeding lesions
- Worm secrets anticoagulant substance so bleeding continues for prolonged period
- Degree of anemia is proportional to –
 Worm burden, availability of dietary iron, body iron store

Blood loss in hookworm infection

0.2 ml / worm / day – A.doudenale
0.03 ml / worm / day – N.americanus

Laboratory diagnosis

Direct evidence

 Demonstration of eggs in stool by direct microscopy or by concentration technique

- Indirect evidence
 - Blood examination
 - Oetection of anemia

Stool examination

- If examination made immediately
 - Ocharacteristic eggs with 4 blastomeres will be seen
 - No differences between eggs of Necator and Ancyclostoma
 - < 5 eggs / cover slip light infection</p>
 - > 20 eggs / preparation heavy infection
- If delay occurs > 24 hours
 - Carvae will hatch out
 - O Has to be differentiated from strongyloides larva

Concentration method

Sedimentation technique
 Formal-ether technique
 Floatation technique
 Saturated sodium chloride method
 Zinc sulfate method

Formal – ether technique

- Mix 1 gm of stool 10 ml of 10 % formal-saline left for 10 min
- Strained through wire gauze or gauze piece in centrifuge tube
- Add 3 ml of ether to filtrate
- Centrifuge at 2000 rpm for 2 min
- Allow to settle
- Decant supernatant fluid with debris
- Make cover slip preparation from deposit
- Count the number of eggs

Saturated sodium chloride technique

- 1/4th of a 25 ml test tube is filled with saturated salt solution
- Add 1 gm of stool
- Mix and add more salt solution
- Tube is kept in vertical position any debris collected on top is removed
- Tube is filled up to top (rim of tube)
- Cover slip is placed over it so that it is in contact with fluid
- Preparation is allowed to stand for 30-40 min
- It is lifted carefully by a straight pull upwards and placed on a slide face downwards
- Examine & count number of eggs

Stoll's egg counting technique

- Add 3 gm of faeces + 42 ml of water (1:15 dilution) in a rubber stopper glass tube, Close tube & mix thoroughly
- 0.15 ml of suspension is examined microscopically for counting eggs
- The numbers are multiplied by 100 to give number of eggs / gm of faeces
- Multiplication factor :
 - ○Semi formed 2 unformed soft 3

○Unformed watery – 4

fluid - 5

Indirect evidence

- Occult blood positive
- Eosinophilia may be present
- Anemia Hypochromic microcytic
- Hb, PCV, MCV, MCHC all \downarrow

Treatment

Anthelminthic drugs 100 mg BD for 3 days 400 mg single dose OPyrantel pamoate 10 mg/kg body weight as a single dose Max 1 gm

Treatment of anemia

Creeping eruption

- Also called as "Cutaneous larva migrans"
- Seen in species of Ancyclostoma which are not adapted to human

OA.brasiliensis & A.caninum

- After penetrating skin layers they cannot proceed to normal development
- Wander in skin layers aimlessly producing itchy reddish papule along path traversed by larvae

Difference b/w Necator & Ancyclostoma

	A.doudenale	N.americanus
Size	Larger & thick	Smaller & slender
Anterior end	Bends in same body direction	Opposite direction
Buccal capsule	4 hook like ventral teeth 2 knob like dorsal	4 chitinous plates – 2 on ventral & 2 on dorsal
Copulatory bursa	Dorsal ray single	Dorsal ray split from base

	A.doudenale	N.Americanus	
Number of rays	13	14	
Vulval opening (ventrally)	At junction of middle & posterior 3 rd	At junction of middle & anterior 3 rd	
Filariform larva	Longer	short	
Pathogenicity	More	Less	
Blood loss /day	0.2 ml / worm	0.03 ml / worm	