

## Learning objectives

At the end of the session, the students will be able to

- Describe morphology and antigens
- Describe Pathogenesis & Clinical features
- Choose appropriate lab diagnosis and interpret the results
- Describe prevention and treatment

#### Ananerobes

- Anaerobic bacteria do not have cytochrome system for oxygen metabolism and hence are unable to neutralize toxic oxygen metabolites
- Classification
- **Obligate anaerobes:** Cannot tolerate O2. Completely lack superoxide dismutase and catalase enzymes
- Aerotolerant anaerobes: Do not utilize oxygen forgrowth, but tolerate its presence. Possess small amounts of superoxide dismutase and peroxidase (but lack catalase)

# **Special requirements to grow Anaerobes**

- Anaerobic condition:
- McIntosh and Filde's anaerobic jar
- GasPak system
- Anoxomat system
- Anaerobic glove box
- Pre-reduced anaerobically sterilized (PRAS) media.
- Medium with low redox potential: By adding reducing substances -unsaturated fatty acid, ascorbic acid, glutathione, cysteine, glucose, sulfites and metallic iron

## **CLOSTRIDIUM**

- Gram-positive bacilli, having bulging spores
- Saprophytes found in soil, fresh water, marine water, decaying vegetation, animal matter and sewage
- Harbored in intestine of vertebrates and invertebrates
- Human Pathogens:
- C. perfringens: Gas gangrene
- C. tetani: Tetanus
- C. botulinum: Causes botulism
- C. difficile: Causes pseudomembranous colitis.

## **Spore of Clostridia**

- Wider than the vegetative bacteria → swollen or spindleshaped appearance
- Most of the clostridia bear a sub-terminal spores except
- C.bifermentans Central & oval
- C.perfringens subterminal & oval
- C.tetani terminal & spherical (drumstick)
- C.tertium terminal & oval (tennis racket)



# Cultivation

- Clostridia grow well in common anaerobic media
- Robertson's cooked meat (RCM) broth
- Chopped meat particles → glutathione and unsaturated fatty acids which take up oxygen
- Proteolytic turn the meat black and produce foul odor, e.g. *C. tetani, C. botulinum A, B and F.*
- Saccharolytic species turn the meat pink, e.g. *C. perfringens, C. difficile and C. botulinum C, D and E.*

#### Robertson cooked meat broth: A. Uninoculated; B. Pink and turbid (*C. perfringens*); *C. Black and turbid (C. tetani*)





# **CLOSTRIDIUM PERFRINGENS**

# **CLOSTRIDIUM PERFRINGENS**

- C. perfringens (previously, C. welchii) commensal in human animals large intestine and environmental saprophyte
- Capsulated, non-motile, gram-positive bacillus
- Sub-terminal bulging spores, NO spores in tissues or in culture media (especially the gas gangrene strains)
- Invasive and toxigenic.

# Major Toxins of *C.difficile*

| Toxin       | Biological activity                      |  |
|-------------|------------------------------------------|--|
| Alpha (α)   | Lethal, lecithinase (phospholipase C)    |  |
|             | Hemolytic, Requires Ca <sup>+2</sup> ion |  |
| Beta (β)    | Lethal, necrotizing, trypsin labile      |  |
| Epsilon (ε) | Lethal, permease, trypsin activatable    |  |
| lota (ι)    | Lethal, dermonecrotic,                   |  |
|             | Binary, has 2 fragments                  |  |
|             | A-ADP ribosylating                       |  |
|             | B- Binding                               |  |
| Alpha (α)   | Lethal, lecithinase (phospholipase C)    |  |
|             | Hemolytic, Requires Ca <sup>+2</sup> ion |  |

# Minor Toxins of *C.difficile*

| Toxin     | Biological activity                            |  |
|-----------|------------------------------------------------|--|
| Gamma(γ)  | Not defined                                    |  |
| Delta(δ)  | Hemolysin                                      |  |
| Lamda (λ) | Protease                                       |  |
| Карра (к) | Collagenase and gelatinase                     |  |
| Theta (θ) | Hemolysin (O <sub>2</sub> labile)<br>Cytolysin |  |
| Eta(η)    | Not defined                                    |  |
| Mu(μ)     | Hyaluronidase                                  |  |
| Nu(υ)     | Deoxyribonuclease                              |  |

# **Classification of** *C.perfringens*

| Туре | Major Toxin produced    | Disease                        |
|------|-------------------------|--------------------------------|
| Α    | Alpha                   | Gas gangrene,                  |
|      |                         | Food poisoning                 |
| В    | Alpha, beta and epsilon | Lamb dysentery                 |
| С    | Alpha and beta          | Enteritis necroticans in       |
|      |                         | humans                         |
| D    | Alpha and epsilon       | Enterotoxemia and pulpy kidney |
|      |                         | disease in sheep               |
| E    | Alpha and iota          | Possible pathogen of sheep     |
|      |                         | and cattle                     |

# **Clinical Manifestations**

- Mostly polymicrobial involving other clostridia species
- <u>Clostridial Wound Infection (MacLennan Classification)</u>
- Simple wound contamination: wound surface contamination, without invasion of underlying tissue, as occurs in absence of devitalized tissue
- Anaerobic cellulitis: Involves fascial plane with minimal toxin release, without muscle invasion
- Anaerobic myositis (gas gangrene): Muscle invasion occurs, which leads to gas in the muscle compartment with abundant toxin release

# **Clostridial Enteric Infection**

- Food poisoning: C. perfringens type A enterotoxin (
- Improperly cooked contaminated meat
- Diagnosis: By detection of enterotoxin in feces by enzyme immunoassay
- Enteritis necroticans (gas gangrene of the bowel/ Bigbel/ Darmbrand): life-threatening condition - ischemic necrosis of the jejunum and gas in the tissue plane
- Caused by *C. perfringens type C strains, producing*β toxin
- **Necrotizing enterocolitis:** associated with *C. perfringens type A*
- Gangrenous appendicitis.

# **Other Clostridial Infections**

- **Bacteremia:** *C. perfringens followed by C. tertium and C.septicum*
- Skin and soft-tissue infections: C. perfringens, C.histolyticum, C. septicum, C. novyi, and C. sordellii
- Endometritis leading to toxic shock C. sordellii
- Meningitis and brain abscess
- Panophthalmitis (due to *C. sordellii or C. perfringens).*

#### **Gas Gangrene**

- Rapidly spreading, edematous myonecrosis, in association with severely crushed wounds contaminated with pathogenic clostridia, particularly with C. Perfringens
- Etiological agents always polymicrobial
- Established agents: C. perfringens (60%) & C.novyi and C.septicum (20–40%)
- **Probable agents:** less commonly implicated *C.histolyticum, C.sporogenes, C.fallax, C.bifermentans, C.sordellii, C.aerofoetidum and C.tertium.*

#### **Pathogenesis**

- Anaerobic environment: Crushing injuries of muscles, open fractures of long bone, foreign bodies, devitalized tissues → interruption in the blood supply → tissue ischemia
- **Contamination of wound with clostridial spores** present in the soil (during war or road traffic accident) or clothes
- Non-traumatic gas gangrene rare via hematogenous seeding of normal muscle with bowel clostridia (e.g. colonic malignancy).

# **Virulence Factors Mediating Gas Gangrene**

- Toxins produced by C. Perfringens
- α toxin phospholipase C and sphingomyelinase activities → aggregates of platelets and neutrophils in the bloodvessels causing occlusion
- $\alpha$  toxin directly suppresses myocardial contractility  $\rightarrow$  reduction in the cardiac output  $\rightarrow$  hypotension
- θ toxin marked vasodilation by activating mediators (e.g. prostacyclin, platelet-activating factor).



# **Clinical Manifestation of Gas Gangrene**

- incubation period- 10 hrs to 7 days, depending upon nature of injury, amount of wound contamination and type of clostridial species involved
- **Clinical manifestations:** Mortality rate (50%)
- Excruciating local pain, sudden
- foul-smelling thin serosanguineous discharge
- Gas bubbles (crepitus) in muscle planes
- Brawny edema and induration  $\rightarrow$  gangrene & liquefication
- Shock and organ failure

## aboratory Diagnosis of Gas Gangrene

- Treatment to be started early Based on the clinical diagnosis. Laboratory diagnosis has role only for Confirmation of the clinical diagnosis & Species identification
- Specimen
- Ideal samples Necrotic tissues, muscle fragments and exudates from deeper part of the wound
- Blood culture if bacteremia is suspected
- Swabs rubbed over the wound surface or soaked in exudates are not satisfactory
- Transport immediately in Robertson's cooked meat broth

# **Direct Microscopy**

- Absence of neutrophils characteristic feature
- Thick, stubby, boxcar-shaped, gram-positive bacilli without spore C. perfringens
- Spore bearing gram-positive bacilli suggest other clostridia
- Citron bodies *C.septicum*
- Large rods with oval sub-terminal spores— *C. novyi.*



#### **Target hemolysis**

- Double zone hemolysis
- Blood agar inner narrow zone of complete hemolysis (due to θ toxin), surrounded by a much wider zone of incomplete hemolysis (due to the alpha toxin)



# **Nagler's reaction**

- Lecithinase activity of α toxin
- Opalescence surrounding streak line on egg yolk agar or media containing 20% human serum
- Opalescence inhibited by anti-α toxin if added in medium
- **Positive** C.perfringens, C. Bifermentans,C. baratti and C. sordellii



#### **Reverse CAMP test**

- C.perfringens is streaked over the center of blood agar plate and Streptococcus agalactiae is streaked perpendicular to it
- Presence of enhanced zone of hemolysis (arrow-shaped) pointing towards C.perfringens indicates the test is positive



#### **Other tests**

#### • Heat tolerance:

 C. perfringens can grow when RCM broth is incubated at 45°C for 4– 6 hours. This differentiates it from other organisms in the specimen  litmus milk-*C.perfringens* produces
*"stormy clot reaction"* due to fermentation of lactose producing acid and vigorous gas

#### **Treatment Gas gangrene**

- Early surgical debridement is the most crucial step All devitalized tissues widely resected. Closure of wounds delayedfor 5–6 days until the sites are free from infection
- Antibiotics: Combination of penicillin and clindamycin is recommended for 10–14 days
- Hyperbaric oxygen: may kill the obligate anaerobic clostridia such as *C. perfringens; Has* no effect onaerotolerant clostridia (*C. septicum*)
- Passive immunization with anti-α-toxin antiserum.



# **CLOSTRIDIUM TETANI**

# **CLOSTRIDIUM TETANI**

- Obligate anaerobic, gram-positive bacillus with terminal round spore (drum stick appearance)
- Causes 'tetanus' skeletal muscle spasm and autonomic nervous system disturbance
- *C. tetani* is **ubiquitous in nature**, widely distributed in soil, hospital environment and intestine of man and animals.

### **Virulence Factors**

- Tetanolysin: Heat labile, oxygen labile hemolysin. No role in pathogenesis of tetanus
- Tetanospasmin (or tetanus toxin): neurotoxin responsible for tetanus
- Prevents the presynaptic release of inhibitory neurotransmitters glycine and GABA, which leads to spastic muscle contraction
- Antigenic. Toxoided by formaldehyde
- Plasmid coded

## **Mode of Transmission**

- Tetanus bacilli enter through:
- Injury (superficial abrasions, punctured wounds, road traffic accidents)
- **Surgery** done without proper asepsis
- Neonates: Following abortion/delivery, due to unhygienic practices
- Otitis media (otogenic tetanus)
- Noninfectious: There is no person-to-person spread

## **Clinical Manifestations**

- Incubation period 6–10 days. Shorter the incubation period, graver is the prognosis. Muscles of the
- Face and jaw are often affected first
- First symptom: Trismus or lock jaw, → muscle pain and stiffness, back pain, and difficulty in swallowing
- Neonates difficulty in feeding

## **Clinical Manifestations**

- Painful muscle spasm -
- Localized: Involves the affected limb
- Generalized painful muscle spasm → leads to descending spastic paralysis
- Autonomic disturbance low or high blood pressure, tachycardia, intestinal stasis, sweating, increased tracheal secretions and acute renal failure.

## Complications

 Risus sardonicus: abnormal, sustained spasm of the facial muscles that appears to produce grinning


### Complications

- Opisthotonos position: abnormal posture of the body, occurs due to generalized spastic contraction of the extensor muscles
- Respiratory muscles spasm



#### **Neonatal Tetanus**

- Neonatal tetanus (WHO definition) 'an illness occurring in a child who loses ability to suck and cry between day 3 and 28 of life and becomes rigid and has spasms'
- Also known as "8th day disease" as the symptoms usually start after 1 week of birth
- Most common reason: Unhygienic practices during deliveries such as infected umbilical stumps due to application of cow dung, rarely by circumcision or by ear-piercing
- Seasonal: More common in July, August and September months



# Epidemiology

- Tetanus is more common in developing countries including India due to:
- Warm climate
- Rural area with fertile soil
- Unhygienic surgeries or deliveries.
- Incidence decreasing due to widespread immunization of infants and pregnant mothers

- Treatment started immediately based on clinical diagnosis. Laboratory diagnosis – only supportive
- Specimen
- Excised tissue bits from the necrotic depths of wounds
- Gram Staining
- Gram-positive bacilli with terminal and round spores (drum stick appearance)



# Culture

- Culture is more reliable than microscopy
- Robertson cooked meat broth: C. tetani, being proteolytic turns the meat particles black and produces foul odor
- Blood agar with polymyxin B: These plates are incubated at 37°C for 24–48 hours under anaerobic condition.
- C. tetani produces characteristic swarming growth

# **Toxigenicity Test**

- In vitro hemolysis inhibition test: indicates the production of only tetanolysin but not tetanospasmin
- In vivo mouse inoculation test: growth suspension injected in root of tail of mouse. Animal develops stiffness which begins with the tail and progresses to involve the hind limbs on the inoculated side → the other limb → trunk →forelimbs.
- **Death** within two days. This test indicates the production of tetanospasmin.

#### **Treatment Tetanus**

- Passive immunization (tetanus immunoglobulin) -Treatment of choice
- 1. HTIG (Human tetanus immunoglobulin)
- 2. ATS (Antitetanus serum, equine derived).
- Dosage: 250 IU of HTIG or 1500 IU of ATS single IM
- Duration of protection: Effect of HTIG and ATS last for 30 days and 7–10 days respectively

#### Treatment

- **Combined Immunization** (Both active and passive immunization) in nonvaccinated person
- **Antibiotics**: Minor role as they cannot neutralize the toxins
- They are useful:
- Early infection, before expression of the toxin (<6 hours)
- To prevent further release of toxin
- Metronidazole drug of choice. (400 mg rectally or 500 mg IV every 6 hourly for 7 days)
- Penicillin alternatively

#### **Other measures:**

- Symptomatic treatment: Antispasmodic (benzodiazepines)can be given
- Entry wound should be identified, cleaned and debrided of necrotic material, so as to remove the anaerobic foci of infection
- Patient should be **isolated in a separate room** as any noxious stimulus can aggravate the spasm

### **Prevention**

- Active Immunization (Vaccine) most effective
- Tetanus toxoid (TT)
- Monovalent vaccine:
- Plain formal toxoid (or fluid toxoid): prepared by exposing to formalin
- Adsorbed: Formol toxoid is adsorbed on to alum
- Combined vaccine: DPT (Diphtheria toxoid, Pertussis whole cell killed preparation and Tetanus toxoid)

#### **Prevention**

- Primary immunization of children: Tetanus toxoid
- 3 doses of Pentavelent vaccine (DPT, Hib HBV) at 6, 10 and 14 weeks of birth → 2 booster doses of DPT at 16–24 weeks and 5 years → two additional doses of TT at 10 years and 16 years
- Adult immunization: If primary immunization is not administered in childhood- Four doses of TT; 2 doses at 1 month interval → 2 booster doses at 1 year and 6 years
- Site: deep intramuscular route at anterolateral aspect of thigh (children) and in deltoid (adults)
- **Protective titer:** antitoxin titre is  $\geq 0.01$  unit/mL.

# **Prevention of Tetanus after Injury**

 Surgical toilet → immunization which depends on the wound type and immunization status of the individual

| Туре | Major Toxin produced    | Disease                                         |
|------|-------------------------|-------------------------------------------------|
| Α    | Alpha                   | Gas gangrene,<br>Food poisoning                 |
| В    | Alpha, beta and epsilon | Lamb dysentery                                  |
| С    | Alpha and beta          | Enteritis necroticans in humans                 |
| D    | Alpha and epsilon       | Enterotoxemia and pulpy kidney disease in sheep |

#### **Prevention of Neonatal Tetanus**

- Promoting hospital or attended deliveries
- Aseptic clean practices are followed during deliveries—clean hand, clean surface, clean blade for cutting cord, clean cord tie, clean cord stump, cleantowel and clean water
- TT (2 doses) to all pregnant women
- Neonatal tetanus elimination is based on:
- Neonatal tetanus rate: 1/1000 live births in every district
- TT coverage to pregnant women >90%
- Attended deliveries >75%



# **CLOSTRIDIUM BOTULINUM**

# **CLOSTRIDIUM BOTULINUM**

- Clostridium botulinum produces botulinum toxin and causes botulism
- Latin word botulus sausage (as poorly cooked sausages were formerly associated with food poisoning)
- Anaerobic Gram-positive Bacillus with subterminal spore
- Ubiquitous in nature, saprophyte in soil, animal manure, vegetables and sea mud

#### **Pathogenesis- Botulinum toxin**

- Non-invasive
- Pathogenesis is due to production of powerful neurotoxin 'botulinum toxin' (BT)
- **Serotype:** Eight serotypes—A, B, C1, C2, D, E, F and G
- Serotypes A, B, E commonly cause human disease; most severe being serotype A
- All serotypes produce neurotoxin; except C2 which produces an enterotoxin
- BT types C and D are bacteriophage coded

#### **Pathogenesis- Botulinum toxin**

- Produced intracellularly, not secreted and appears outside only after autolysis of bacterial cell
- Synthesized initially as a nontoxic protoxin → trypsin or other proteolytic enzymes convert it into active form

#### Mechanism of Action of Botulinum Toxin (BT)

Entry (ingested, inhaled, from wound)  $\rightarrow$  via blood to peripheral cholinergic nerve terminals (neuromuscular junctions, postganglionic parasympathetic nerve endings, and peripheral ganglia)  $\rightarrow$  bind to Ach receptors at neuromuscular junction  $\rightarrow$  blockage of release of Ach  $\rightarrow$  Flaccid paralysis

# **Botulinum toxin**

- Also produced by C. butyricum , C. baratti and C. argentinense
- Recovery: Blocking of Ach receptor is permanent, but the action is short lasting as the recovery occurs in 2–4 months, once the new terminal axons sprout
- Spores do not produce toxins. Toxin production requires spore germination, which occurs in anaerobic atmosphere
- Spores do not normally germinate in adult intestine, however may germinate in the intestine of infants
- Therapeutic uses: Spasmodic conditions such as strabismus, blepharospasm and myoclonus

### **Clinical Manifestations**

- Diplopia, dysphasia, dysarthria
- Descending symmetric flaccid paralysis of voluntary muscles
- Decreased Deep tendon reflexes
- Constipation
- Respiratory muscle paralysis, may lead to death
- No sensory or cognitive deficits

# **Types of Botulism**

- Food-borne botulism: foods contaminated with preformed botulinum toxin
- Most common source: Homemade canned food
- Mostly sporadic; outbreaks are rare
- Wound botulism: Contamination of wounds with C. botulinum spores
- Presents like foodborne botulism except for absence of gastrointestinal features

# **Types of Botulism**

- Infant botulism:
- Ingestion of contaminated food with spores of C. botulinum in children ≤1 year of age
- Manifestations inability to suck and swallow, weakened voice, ptosis, floppy neck, and extreme weakness (floppy child syndrome)
- Self-limiting → Rarely generalized flaccidity, respiratory failure and sudden death. - Management - supportive care
- Adult intestinal botulism: suppressed normal flora, colonized clostridial spores may germinate producing toxin
- **latrogenic botulism:** injection of overdose of the toxin while used for therapeutic purpose

- Microscopy of Food/feces
- Gram-positive, non-capsulated bacilli with subterminal, oval, bulging spores
- Motile by peritrichate flagella
- Isolation:
- **RCM broth:** Turbidity occurs with meat particles turning:
- Black and production of foul odor: *C. botulinum A, B, F* (proteolytic)
- Pink: C. botulinum C, D, E (saccharolytic).
- **Blood agar:** Irregular, hemolytic with fimbriated border

# oxin Demonstration (Mouse Bioassay)

- Mere presence of bacilli in food or feces is of less significance. Toxin demonstration is more meaningful
- Specimens serum, stool, sterile water or saline enema, gastric aspirates, wound material or foods samples
- Specimens injected into mouse → paralysis in 48 hours; which can be inhibited by prior administration of specific antitoxin

### **Treatment of Clostridium botulinum**

- Meticulous intensive care support
- Botulinum antitoxin: Administered immediately on clinical suspicion, without waiting for laboratory confirmation. However, once toxin binds to nerve endings, antitoxin has no role
- Wound botulism debrided and drained promptly
- Antibiotics: Susceptible to penicillin; role of antibiotics has not been established.



# **CLOSTRIDIOIDES DIFFICILE**

# **CLOSTRIDIOIDES DIFFICILE**

- Obligate anaerobic, Gram-positive, spore-forming Bacillus
- Responsible for pseudomembranous colitis in association with prolonged antimicrobial use
- Named due to **unusual difficulties in isolation** of *C.difficile*.
- Taxonomically, it is recently placed into a separate genera, *Clostridioides difficile*

### **Pathogenesis**

- Major cause of hospital-acquired infection mainly in the Western world
- Risk factors:
- **Prolonged hospital stay:** Spores in hospital environment colonize colon of patients
- Prolonged antimicrobial use: Disruption of normal colonic flora → enhances *C. difficile* infection
- Cephalosporins (e.g. Ceftriaxone) More common
- Others Clindamycin, Ampicillin and fluoroquinolones

# **Toxin production**

- Only toxigenic strains are pathogenic
- Two powerful exotoxins—toxin A (enterotoxin) & toxin B (cytotoxin)
- Both toxins secreted in intestine → glycosylate GTP binding proteins that regulate the cellular actin cytoskeleton → disruption of the cytoskeleton → loss of cell shape, adherence, and disruption of epithelial cell barrier → diarrhea & pseudomembrane formation
- Infants asymptomatic infection as they lack suitable mucosal toxin receptors

# **Toxin production**

- Host immune response determine the outcome
- Strong IgG response to toxin A— become asymptomatic carriers
- Inadequate IgG response to toxin A— develop disease
- Other risk factors:
- Suppression of normal flora, Advanced age (>65 years)
- Immunosuppression & malignancy, Gastric acid suppressant medications, Use of electronic rectal thermometer
- Hypervirulent epidemic strain: BI/NAP1/027 produces higher levels of toxins and causes severe infection

# **Clinical Manifestations**

- Diarrhea MC manifestation
- Others abdominal pain and leukocytosis, Blood in stool rare
- Pseudomembrane:
- Composition: necrotic leukocytes, fibrin, mucus & cellular debris
- Attaches to the underlying mucosa
- whitish-yellow plaque , 1–2 mm to large enough to spread over the entire colonic mucosa
- Relapse after treatment 15–30% of cases.

- Isolation:
- Stool culture: Anaerobic culture on selective
- CCFA (cefoxitin cycloserine fructose agar)
- CCYA (cefoxitin cycloserine egg yolk agar)
- Sensitive and specific
- Since *C.difficile* can be a GIT colonizer the GIT, only isolation is not enough to establish the infection. Toxin demonstration is more meaningful

- Cell culture cytotoxin neutralization assay: Highly specific but not very sensitive & has long turnaround time
- Toxin detection:
- Toxin and Glutamate dehydrogenase (GDH) detection: GDH is common antigen present in both toxigenic and non-toxigenic strains
- Enzyme immunoassay or rapid tests

- A. All negative: Rules out presence of *C. difficile* in stool
- B. Positive for GDH only: Confirms presence of nontoxigenic strain of *C.Difficile*
- C. **Positive for toxin A and GDH:** Confirms *C. Difficile* expressing either toxin A or toxin B



- Molecular methods: PCR, real time PCR, gene Xpert targeting gene coding for *C*. *Difficile* toxins in stool
- Colonoscopy: It is highly specific if pseudomembranes sensitivity is low
- **Histopathology:** highly specific but sensitivity is very



### **Treatment** *Clostridium difficile*

- Antimicrobial therapy:
- Initial episode, mild to moderate cases: Oral metronidazole (500 mg TID 10–14 days)
- Recurrent episodes or severe cases: Vancomycin (500 mg, QID 10–14 days)
- Severe complicated or fulminant infection: Vancomycin (via nasogastric tube and by retention enema) plus IV metronidazole
## **Treatment** *Clostridium difficile*

- Other modalities of treatment:
- Intravenous Immunoglobulin: Passively provide antibodies to neutralize the *C. difficile toxins, primarily toxin A*
- Fecal transplant: It involves replenishing of the gut flora with donated feces from a screened healthy donor
- Fidaxomicin: It is a macrolide antibiotic, can be used in cases of relapse and also against hypervirulent strains

## **Prevention (Infection Control Measures)**

- Broad spectrum antimicrobials should be stopped at the earliest.
- Infection control measures of contact precaution:
- Strict hand hygiene with chlorhexidine 4% hand wash
- Isolation of patient
- Ensure proper disinfection of floor, surfaces, toilets and other soiled areas using 1% freshly prepared hypochlorite solution