

Dr.Bhavin Prajapati Assistant Professor Department of Microbiology

Learning Objectives

- Differentiate between fungi & bacteria
- Classify fungi
- Describe laboratory diagnosis of fungal infection
- Diseases caused by fungi

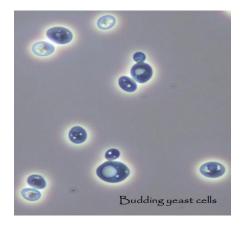
Definitions

- Mykos = mycete = fungus
- Mycology--scientific discipline dealing with fungi
- Mycoses--diseases caused by fungi in human or animals

General knowledge of the fungi

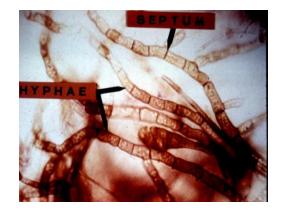
- Eukaryotic microorganisms
- Rigid cell walls: chitin, mannans and polysaccharide (glutan)
- Plasma membranes: ergosterol
- Chemotrophic
- Used in fermentation, production of antibiotics

Differenet from bacteria


- Morphology –unicellular or multicellular
- Rigid cell wall
- Presence of sterol in cytoplasmic membrane
- Presence of true nuclei with nuclear membrane & paired chromosomes
- Reproduction: Sexual or asexual or both

Classification of fungi

- Morphological
- Based on site of infection
- Taxonomic


Morphological classification

- Yeast
- Yeast like
- Mould

Dimorphic

Clinical Classification

Superficial

Subcutaneous/cutaneous

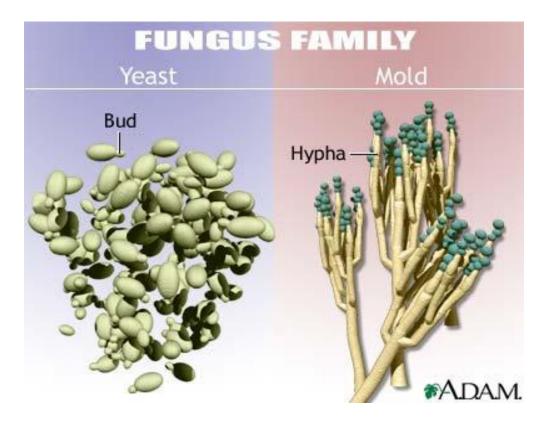
•Systemic

Opportunistic

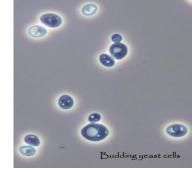
Fungi-Taxonomic classification

SEXUAL SPORE CLASS

Zygospore-----Zygomycetes

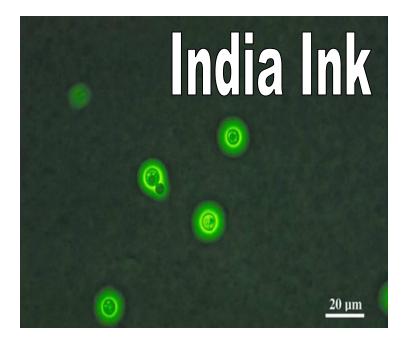

Basidiospore-----Basidiomycetes

Ascospore-----Ascomycetes


None/Unknown----Deuteromycetes ("Fungi Imperfecti")

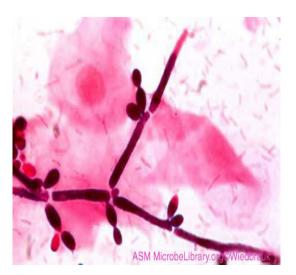
Morphological classification

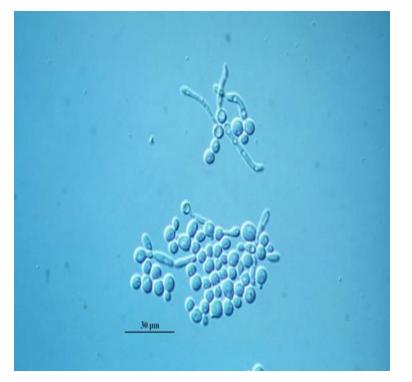
- Yeast
- Yeast like fungi
- Mould
- Dimorphic



- 1. These occur in the form of round or oval bodies which reproduce by budding
- 2. Yeasts colonies resemble bacterial colonies in appearance and in consistency.
- 3. The only pathogenic yeast of medical importance is *Cryptococcus neoformans*.

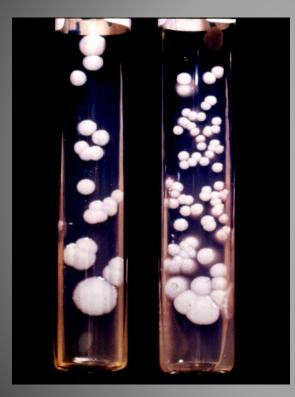
Cryptococcus neoformans


Yeast colonies


2. Yeast-Like

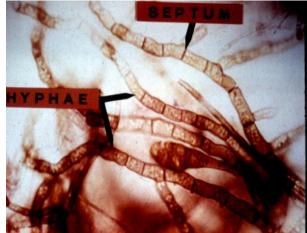
1.These are fungi which occur in the form of budding yeast-like cells and as chains of elongated filamentous cells which appear as broad septate hyphae. These are called as pseudomycelium.

2. Example is *Candida*.



Candida albicans

Candida Colonies



3. Moulds = filamentous

1.The basic morphological elements of filamentous fungi are long branching filaments or hyphae, which intertwine to produce a mass of filaments or mycelium.

2.Colonies are strongly adherent to the medium and unlike most bacterial colonies cannot be emulsified in water.

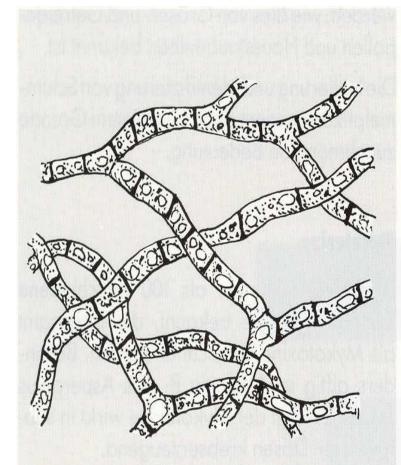
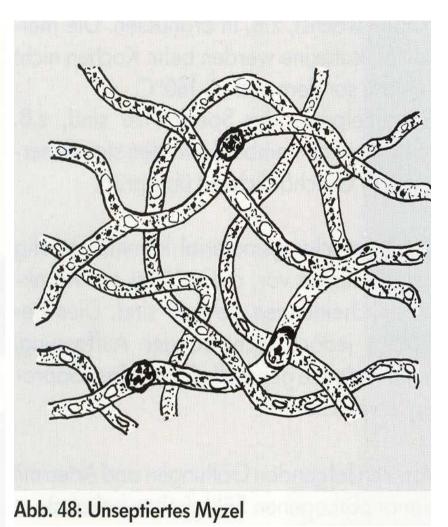
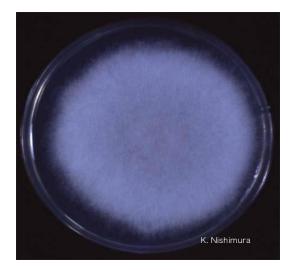



Abb. 47: Septiertes Myzel

mycelium: septate


mycelium: non septate

3. The surface of these colonies may be velvety, granular,powdery, or may show a cottony aerial mycelium.

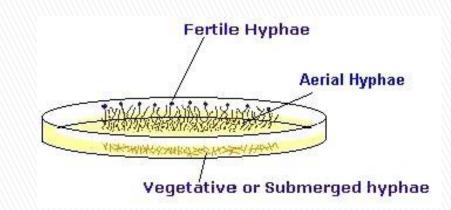
 4. Many fungi produce Pigmentation – colony itself – obverse of the underlying medium – reverse

Examples : Aspergillus Penicillium Fusarium Rhizopus

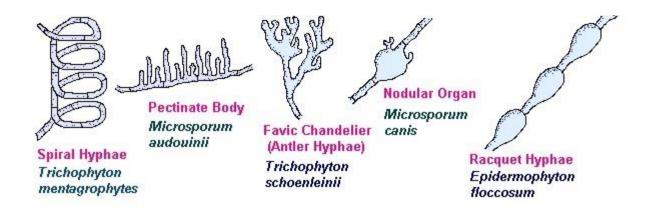
cottony

velvety

powdery



granular


Types of hyphae :

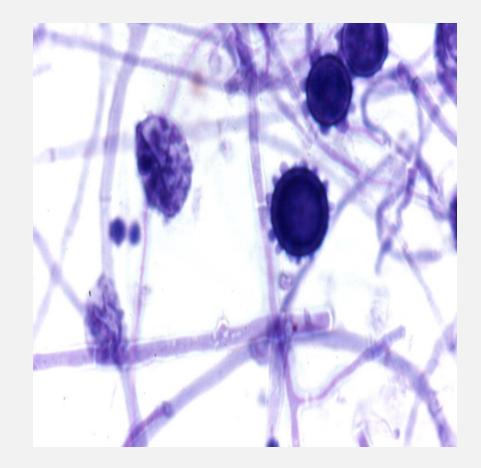
- Hyphae -could be
 - Septate
 - Non-septate
- Based on pigmentation
 - Hyaline
 - Dématiceous
- Mycelium
 Vegetative
 - Aerial / fertile

Special Hyphal structures

- Spiral
- Racquet
- Nodular
- Favic Chandelier
- Pectinate body

4. Dimorphic Fungi

Has two morphology -


At 22–25° c –outside body – Mould At 37° c – inside body – Yeast

Examples :

- Blastomyces dermatitidis
- Coccidioides immitis
- Histoplasma capsulatum
- Paracoccidioides brasiliensis
- Penicillium marneffei

Histoplasma capsulatum –22° –25°C

Histoplasma capsulatum –37°c

Clinical Classification of Mycoses

Superficial

Subcutaneous

•Systemic

.Opportunistic

Superficial Mycoses

Surface infection & Cutaneous infection

Skin, hair and nails

Rarely invade deeper tissue

e.g. Dermatophytes, T. versicolor

Superficial mycoses

Surface infection	Cutaneous infection
Affecting dead layers of skin & its appendages	Affecting cornified layer of skin & its appendages
No inflammatory response	Inflammatory & allergic response
e.g. Tinea versicolor, Tinea nigra, Piedra	e.g. Dermatophytes

Subcutaneous Mycoses

 Confined to subcutaneous tissue and rarely spread systemically. Fungi present in soil introduced in body by trauma

Examples :

- Mycetoma
- Chromoblastomycosis
- Sporotrichosis
- Rhinosporidiosis

Systemic Mycoses

- Involve lung and other deep viscera
- May become widely disseminated
- Mostly caused by dimorphic fungi
- Enter through inhalation, produces pneumonia and then enter into blood and spread to other organs

OPPORTUNISTIC FUNGI

Fungi are of low virulence Saprophytes

Non pathogenic in healthy but can become pathogenic if person is immuno-compromised

- Examples
 - Candida
 - Aspergillus
 - Mucor

Predisposing condition

- Systemic diseases
 - Diabetes, cancer, lymphoma, leukaemia
- Patient on
 - Immunosuppressive drugs (renal transplant)
 - Corticosteroid therapy
 - X-ray irradiation (bone marrow suppression)
 - Broad-spectrum antibiotics

Taxonomic classification

- Based on type of sexual spore
 - Zygospore
 - Oospore
 - Ascospore
 - Basidiospore
- Classified in to
 - Zygomycetes
 - Ascomycetes
 - Basidiomycetes
 - Fungi imperfecti

Reproduction of Fungi

1. Sexual reproduction -- Sexual spores

Formed through a process involving the fusion of two parental nuclei followed by meiosis

2. Asexual reproduction--Asexual spores

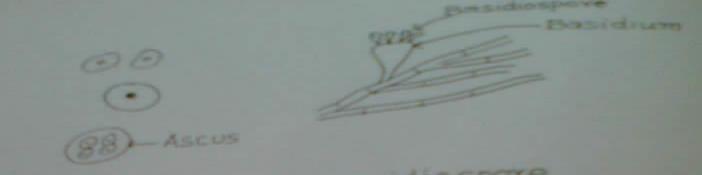
The product of mitotic division of a single parent cell.

Vegetative spores – thallospore Aerial spores

Sexual spore

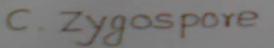
Formed after sexual fusion – Zygote formation

Ascospore


- Formed by a process called as free cell formation within a cell like structure called as ascus
- Basidiospore
 - Formed externally at the tip of basidium

Zygospore

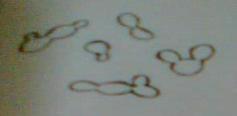
• By fusion of two cells of equal size

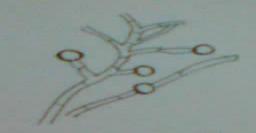

Oospore

• By fusion of big female cell & small male cell

A. Ascospore B. Basidio spore

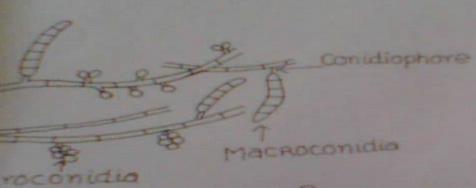
FLG. 7.

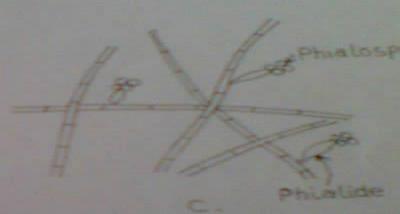



SEXUAL SPORES

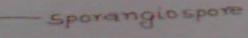
Asexual spores – Thallospore

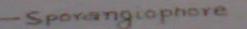
- Develop directly from thallus Hyphae
- Arthrospores formed by disarticulation of vegetative cells of hyphae
- Blastospore buds of yeast
- Chlamydospores develop from hyphal cell in old cultures or under unfavorable condition



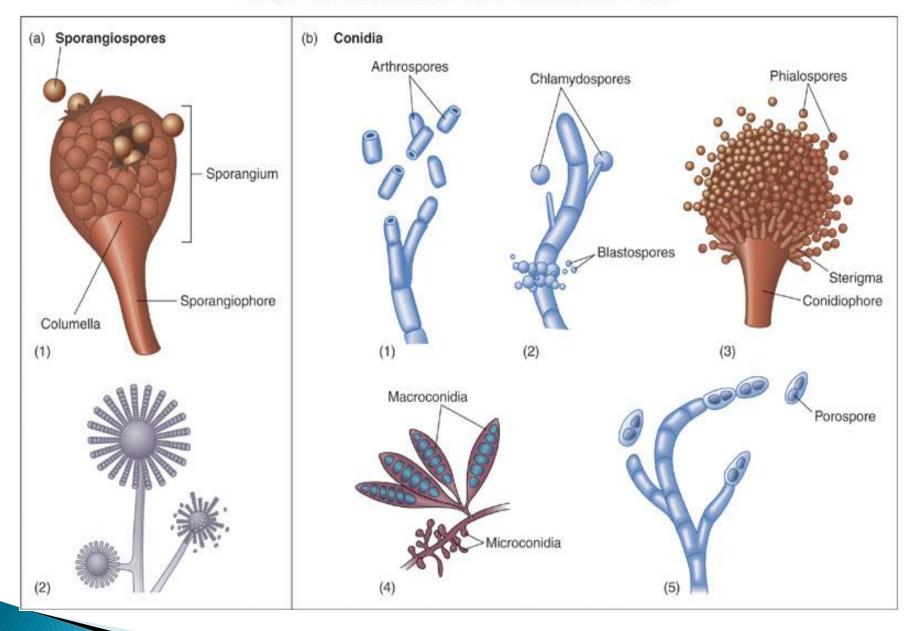

a statestespore

to-


B. Arthrospore C. Chlamydospore


FIG.5. THALLOSPORES

Spowanglaspoves


E. Aleurospore

Asexual spores – from special hyphal structure – aerial spores

Sporangiospores

- Spores formed in sporangia borne on sporangiophore (Intracellular)
- Conidia
 - Formed externally on phialides or specialized hyphal branches – conadiophore
 - Conidia 2 types
 - Microconidia unicellular
 - Macroconidia multicellular

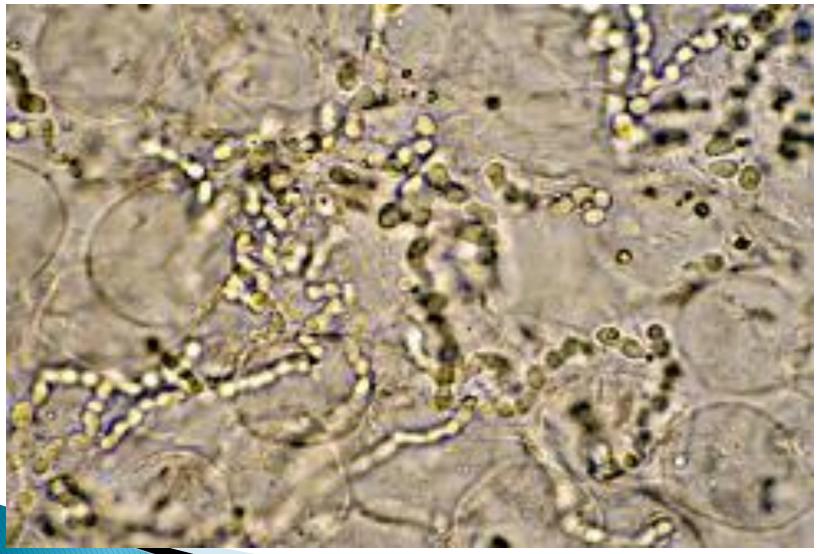
Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Laboratory to diagnosis of fungal infection

- Specimen collection and transport
- Specimen processing
 - Direct examination
 - Culture
 - Identification by growth
- Antigen/antibody detection

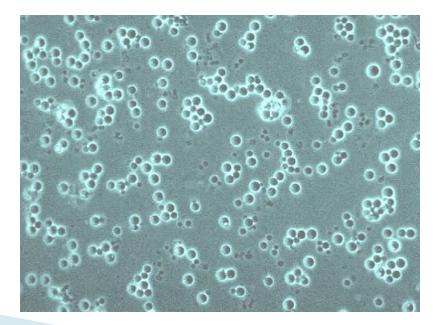
Specimen collection and transport

- must be material from the actual site of infection
- carefully collected without contamination
- in sufficient quantity
- collected before antifungal therapy

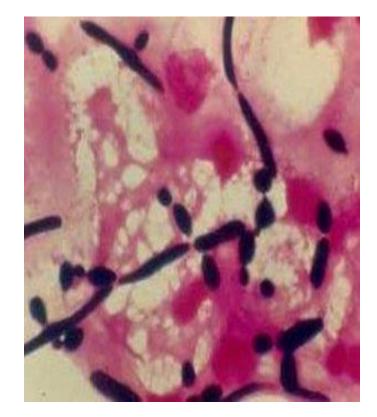

Specimen processing

- Specimen should be examined as soon as possible
- Direct examination :
 - KOH mount
 - Calcofluor white
 - India ink
 - Gram stain
- Culture media
 - SDA
 - Brain-Heart infusion agar (BHIA)

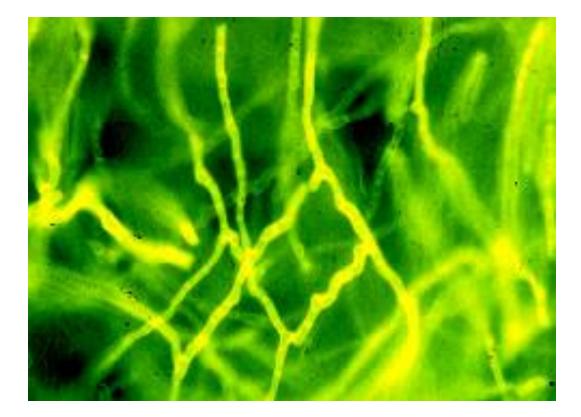
KOH preparation


- Made for hair, nail or skin scraping or all thick material which requires digestion
- Consist of
 - KOH 10 % 70 ml
 - Glycerol 20 ml

Direct wet mount (KOH)


India ink preparation

 Negative stain to detect presence of capsule of Cryptococcus neoformans which appear as halo surrounding yeast cells



Gram stain

- Same procedure as for bacteriology
- Fungi are gram positive
- Budding yeast cells with or without psuedohyphae or hyphae are seen.

Nail: Calcofluor white stain

Culture of fungi

- Fungi are slowly growing taking days to weeks to grow
- Most of specimen may contain bacteria along with fungi
- Media should be prepared in such a way to avoid contamination
 - Antibiotics are added
 - Kept in screw-cap bottles
 - pH is kept acidic

Culture media

Sabouraud's dextrose agar with antibiotics

 Dextrose 	40 gm	4 %
 Poly peptone 	10 gm	1 %
• Agar	25 gm	2.5 %
• DW	1000 ml	
 Antibiotics 	Chloramphenicol	
	Gentamycin	
	Cycloheximide	

- Brain hear infusion agar
- Corn meal agar

Growth of fungus on SDA

Brain - heart infusion agar

- Enriched medium
- Mainly used for systemic fungi like Histoplasma
- Consist of
 - Calf brain infusion
 - Beef heart infusion
 - Peptone
 - Glucose
 - NaCl, Na2HPO4 & DW

Identify by colony characteristics

- Colony characters: Glabrous, velvety, yeast like, cottony, granular, pigmented
- Rate of growth
 - Rapid
 - 1-2 days Mucor
 - 2-3 days Yeast & yeast like fungi
 - Intermediate
 - 1-2 weeks Dermatophyte
 - Slow
 - 2-4 weeks Systemic

Growth of fungus on SDA

Microscopic examination after culture

- Tease mount
- Cellophane tape preparation
- Slide culture

Tease mount in LCB -Lactophenol Cotton Blue stain

Role of

- Lactic acid : Enhances penetration of sol. in hyphae
- Phenol : Inactivates the living cells
- Cotton blue : Does the staining
- <u>Glycerol</u> : Creates semipermanent preparation & reduces precipitation of stain

Antigen detection

- Used for Cryptococcus, Aspergillus, Histoplasma etc
- Detected by
 - CIEP
 - Latex agglutination
 - ELISA
 - PCR

Thank you