RED BLOOD CELLS (RBCs)

- Dr. Urvashi Kapadia

HAEMOPOIESIS

 Origin, development & maturation of all the blood cells.

- It includes
 - Erythropoiesis
 - Leucopoiesis
 - Megacaryocytopoiesis
- Theories of haemopoiesis
 - monophyletic theory
 - Polyphyletic theory

Hematopoiesis **Pluri-Potent** Hematopoietic **Stem Cell PHSC** - Self Renewal - Proliferation - Differentiation

HAEMOPOIESIS

Hematopoiesis

Bone Marrow

ERYTHROPOIESIS

- Definition Origin, Development & Maturation of RBCs.
- Sites of Erythropoiesis
 - a) During intrauterine life
 - 1) Mesoblastic stage
 - 2) Hepatic stage
 - 3) Myeloid stage
 - b) In children & adults
 - 1) Upto 5 6 yrs :- From red bone marrow of all bones
 - 2) From 6 20 yrs :-Red BM of long bones & membranous bones
 - 3) After 20 yrs :- Ends of the long bones & All membranous bones

Site of Erythropoiesis

Extravascular erythropoiesis

Intravascular erythropoiesis

During intrauterine life

Mesoblastic stage (3rd week to 3 months)

Hepatic stage (after 3 months) Myeloid stage (3rd trimester)

Liver & spleen

Nucleated RBCs

Bone marrow

Yolk sac

Erythropoiesis

Pro-Erythroblast

Early (Basophilic) normoblast

Intermediate (Polychromatophilic) normoblast

Late (Orthochromic) normoblast

Reticulocyte

Red Blood Cell

PROERYTHROBLAST

First blast cell, first cell of erythrocyte series

Cell size –large, 15 - 20 µm

C. plasm- scanty, deeply basophilic.

Nucleus- large, 3/4 of cell, 2-3 nucleoli, chromatin open.

Hb – absent

Mitosis – present.

EARLY

NORMOBLAST/

Basophilic Erythroblast Cell size- decreases, 14-16 µm

C.plasm- increases, basophilic

Nucleus- size decreases, no

nucleoli, chromatin condenses

Hb – absent

Mitosis - present

INTERMEDIATE NORMOBLAST/ Polychromatic erythroblast	Cell size - 10-14 µm C.plasm- increases, polychromatic. Nucleus- size decreases, chromatin condenses. Hb- appears Mitosis- present
LATE NORMOBLAST/ Orthochromatic erythroblast	Cell size- 9-10µm C.plasm- increases, more acidic, less basophilic Nucleus- very small (pyknotic), Hb- increases in amount Mitosis – stops here.

RETICULOCYTES	:Cell size- 8-9µm
	:C.plasm- increases, RNA
	present in the form of
	a reticulum
	:Nucleus- absent
	:Hb – increases
	:Mitosis - absent
ERYTROCYTES	:Cell size- 7.2 to 7.4 μm
	:C.plasm- acidophilic
	:Nucleus- absent
	:Hb – present
	:Mitosis - absent

Changes in the cells

- Decrease in cell size
- Size of nucleus smaller disappear
- Staining character basophilic
 Polychromatophilic –
 acidophilic
- Hb appear intermediate stage – increase in amount till mature RBC
- Mitosis- Upto intermediate normoblast.

Normal RBC Count

- Importance:
- Must Not fall
 - To supply oxygen from lungs to tissues
- Must Not rise
 - Blood viscosity may increase
 - May impede blood flow

REGULATION OF ERYTHROPOIESIS

A) General factors

C) Factors necessary for

1) Hypoxia - Erythropoietin

Hb formation

- 2) Thyroxine
- 3) Growth factors
- 4) Differentiation factors
- 5) Vitamins

B) Maturation factors

- 1) Vitamin B12 (extrinsic factor)
- 2) Castle's Intrinsic factor(I.F.)
- 3) Folic acid

General factors

- 1) Hypoxia Lack of O2 at tissue level
 - Hypoxia ----erythropoietin ----RBC production.
 - Erythropoietin Glycoprotein
 - <u>Sources</u>: 85% from kidney (from interstitial cells peritubular capillaries)
 - : 15% from liver, tissue macrophages
 - Inactivation: In the liver & kidney
 - Excretion : In urine

Mode of secretion

- Actions of Erythropoietin

- 1) Early differentiation of stem cells into proerythroblast ----- mature RBC.
- 2) Increases release of reticulocytes from the BM.
- 3) Increases synthesis of RNA ,DNA, globin, ferritin. which increases Hb synthesis in normoblasts.

Erythropoietin

Glycoprotein, MW:34,000

Production Kidney

Actions

Procrythroblast Formation

Tissue Oxygenation – Most Important Regulator of Erythropoiesis

- ANY CONDITION —— Decrease Tissue
 Oxygenation Increase Erythropoiesis
- Anemia

Immediately Increase RBCs production

Bone marrow destruction:

Hyperplasia of remaining cells

Increase production of RBCs

High altitudes:

- Partial pressure of oxygen in air less
- Decrease in oxygen transport to tissues
- Tissue hypoxia
- Result?
- Cardiac Failure
 - Inefficient pumping by heart
 - Decreased blood flow to peripheral vessels
 - Tissue hypoxia
 - Result?

- Lung diseases:
 - Failure of oxygen absorption in Lungs
 - Blood carries less Oxygen
 - Tissue hypoxia
 - Result?
- · All conditions have one common problem

HYPOXIA

Factors affecting Ep production

- Increase :
- 1) Hypoxia
- 2) cAMP, NAD, NADP
- 3) Vasoconstrictors
- 4) Hemolysates
- 5) Hormones
 - Thyroxine
 - Ant. Pit. Hormones
 - Androgens

- Decrease
- 1) Oestrogen
- 2) Renal diseases
- Protein deficiency
- 4) Liver diseases

General factors

2) Thyroxine

- 3) Growth factors & Differentiation factors
 - a) Interleukins − IL − 1, 3, 6.
 - b) GM CSF: Colony stimulating factor
- 4) Vitamins B, C, D, E.

REGULATION OF ERYTHROPOIESIS

A) General factors

C) Factors necessary for

1) Hypoxia - Erythropoietin

Hb formation

- 2) Thyroxine
- 3) Growth factors
- 4) Differentiation factors
- 5) Vitamins

B) Maturation factors

- 1) Vitamin B12 (extrinsic factor)
- 2) Castle's Intrinsic factor(I.F.)
- 3) Folic acid

Maturation factors

- 1) Vitamin B12 (Extrinsic factor)
 - Functions:
 - a) Helps in maturation of RBCs.
 - (conversion of pro erythroblasts----mature RBC)
 - b) They are essential for the synthesis of DNA.
 - c) Increases WBC & platelet count.
 - d) Maintains normal activity of CNS.
 - e) Helps in <u>myelination of nerve fibres</u>.

Vitamin B12 Deficiency

- Vitamin B12 deficiency ------
- Decrease DNA synthesis
- Failure of nuclear maturation & division
- Slow reproduction of cells & abnormality of DNA
- Formation of large cells, cell membrane fragility
- Maturation failure ---- Megaloblastic anemia

2) Castle's Intrinsic factor (I. F.)

- I.F. with B12 forms haematinic principle which
 - helps in maturation of RBC.
- Deficiency of I.F. -----Loss of vit.B12 due to
 - a) Failure of its absorption
 - b) Digestive enzyme action
 - Megaloblastic anemia

or

Macrocytic anemia

3) Folic acid

Factors necessary for Hb synthesis

- 1) First class proteins & amino acids
 - For protein part of Hb , globin.
- 2) Iron –For formation of heme part.
- 3) Copper For absorption of iron from GIT.
- 4) Cobalt & nickel For utilization of iron.
- 5) Vitamins Vit. C, riboflavin, nicotinic acid, pyridoxine.

Haemoglobin

- Definition
- Structure
- Synthesis
- Normal values
- Clinically 14.8 gm% Hb is regarded as 100%.
- O2 carrying capacity
 - 1 gm% Hb carries 1.34 ml O2.
 - In males = 21 ml%
 - In females = 18 ml%
- Catabolism of Hb.