RED BLOOD CELLS (RBCs)

- Dr. Urvashi Kapadia

HAEMOPOIESIS

- Origin, development & maturation of all the blood cells.
- It includes
 - Erythropoiesis
 - Leucopoiesis
 - Megacaryocytopoiesis
- Theories of haemopoiesis
 - monophyletic theory
 - Polyphyletic theory

HAEMOPOIESIS

Hematopoiesis

ERYTHROPOIESIS

- Definition Origin, Development & Maturation of RBCs.
- Sites of Erythropoiesis –
 a) During intrauterine life
 - 1) Mesoblastic stage
 - 2) Hepatic stage
 - 3) Myeloid stage
 - b) In children & adults
 - 1) Upto 5 6 yrs :- From red bone

marrow of all bones

- 2) From 6 20 yrs :-Red BM of long
 - bones & membranous bones
- 3) After 20 yrs :- Ends of the long bones & All membranous bones

Site of Erythropoiesis

During intrauterine life

Mesoblastic stage (3rd week to 3 months)

Hepatic stage (after 3 months) Myeloid stage (3rd trimester)

Liver

Intravascular erythropoiesis

Yolk sac

Erythropoiesis

Pro-Erythroblast

Early (Basophilic) normoblast

Intermediate (Polychromatophilic) normoblast

Late (Orthochromic) normoblast

Reticulocyte

Red Blood Cell

PROERYTHROBLAST First blast cell, first cell of erythrocyte series	Cell size –large,15 -20µm C. plasm- scanty, deeply basophilic. Nucleus- large,3/4 of cell, 2-3 nucleoli, chromatin open. Hb – absent Mitosis – present.
EARLY NORMOBLAST/ Basophilic Erythroblast	Cell size- decreases,14-16 µm C.plasm- increases, basophilic Nucleus- size decreases, no nucleoli, chromatin condenses Hb – absent Mitosis - present

INTERMEDIATE NORMOBLAST/ Polychromatic erythroblast	Cell size - 10-14 μm C.plasm- increases, polychromatic. Nucleus- size decreases, chromatin condenses. Hb- appears Mitosis- present
LATE NORMOBLAST/ Orthochromatic erythroblast	Cell size- 9-10µm C.plasm- increases, more acidic, less basophilic Nucleus- very small (pyknotic), Hb- increases in amount Mitosis – stops here.

RETICULOCYTES	:Cell size- 8-9µm
	:C.plasm- increases, RNA
	present in the form of
	a reticulum
	:Nucleus- absent
	:Hb – increases
	:Mitosis - absent
ERYTROCYTES	:Cell size- 7.2 to7.4µm
	:C.plasm- acidophilic
	:Nucleus- absent
	:Hb – present
	:Mitosis - absent

Changes in the cells

- Decrease in cell size
- Size of nucleus smaller disappear
- Staining character basophilic – Polychromatophilic – acidophilic
- Hb appear intermediate stage – increase in amount till mature RBC
- Mitosis- Upto intermediate normoblast.

Normal RBC Count

- Importance:
- Must Not fall
 - To supply oxygen from lungs to tissues
- Must Not rise
 - Blood viscosity may increase
 - May impede blood flow

REGULATION OF ERYTHROPOIESIS

General factors

C) Factors necessary for

- 1) Hypoxia Erythropoietin
- 2) Thyroxine
- 3) Growth factors
- 4) Differentiation factors
- 5) Vitamins
- **B)** <u>Maturation factors</u>
 - 1) Vitamin B12 (extrinsic factor)
 - 2) Castle's Intrinsic factor(I.F.)
 - 3) Folic acid

Hb formation

General factors

- 1) Hypoxia Lack of O2 at tissue level
 - Hypoxia ----erythropoietin ----RBC production.
 - Erythropoietin Glycoprotein
 - -<u>Sources</u> : 85% from kidney (from interstitial cells peritubular capillaries)
 - : 15% from liver, tissue macrophages
 - Inactivation : In the liver & kidney
 - Excretion : In urine

Mode of secretion

- Actions of Erythropoietin

- 1) Early differentiatiion of stem cells into proerythroblast ----- mature RBC.
- 2) Increases release of reticulocytes from the BM.
- 3) Increases synthesis of RNA ,DNA, globin, ferritin. which increases Hb synthesis in normoblasts.

Erythropoietin

Production Kidney

Glycoprotein, MW:34,000

Actions

Proerythroblast Formation

Shortens the Maturation Time

Tissue Oxygenation – Most Important Regulator of Erythropoiesis

- ANY CONDITION Decrease Tissue
 Oxygenation Increase Erythropoiesis
- Anemia

Immediately Increase RBCs production

Bone marrow destruction:

Hyperplasia of remaining cells

Increase production of RBCs

• High altitudes:

- Partial pressure of oxygen in air less
- Decrease in oxygen transport to tissues
- Tissue hypoxia
- Result?
- Cardiac Failure
 - Inefficient pumping by heart
 - Decreased blood flow to peripheral vessels
 - Tissue hypoxia
 - Result?

- Lung diseases:
 - Failure of oxygen absorption in Lungs
 - Blood carries less Oxygen
 - Tissue hypoxia
 - Result?
- <u>All conditions have one common problem</u>
- HYPOXIA

Factors affecting Ep production

3)

4)

- Increase :
-) Hypoxia
-) cAMP, NAD, NADP
 - Vasoconstrictors
-) Hemolysates
- Hormones
 - Thyroxine
 - Ant. Pit. Hormones
 - Androgens

- <u>Decrease</u>
- Oestrogen
- Renal diseases
- Protein deficiency
- Liver diseases

General factors

2) Thyroxine

3) Growth factors & Differentiation factors

- a) Interleukins IL 1, 3,6.
- b) GM CSF : Colony stimulating factor

4) Vitamins – B, C, D, E.

REGULATION OF ERYTHROPOIESIS

General factors

C) Factors necessary for

- 1) Hypoxia Erythropoietin
- 2) Thyroxine
- 3) Growth factors
- 4) Differentiation factors
- 5) Vitamins
- **B)** <u>Maturation factors</u>
 - 1) Vitamin B12 (extrinsic factor)
 - 2) Castle's Intrinsic factor(I.F.)
 - 3) Folic acid

Hb formation

Maturation factors

- 1) Vitamin B12 (Extrinsic factor)
 - Functions :
 - a) Helps in maturation of RBCs.
 - (conversion of pro erythroblasts-----mature RBC)
 - b) They are essential for the synthesis of DNA.
 - c) Increases WBC & platelet count.
 - d) Maintains normal activity of CNS.
 - e) Helps in myelination of nerve fibres.

Vitamin B12 Deficiency

- Vitamin B12 deficiency -----
- Decrease DNA synthesis
- Failure of nuclear maturation & division
- Slow reproduction of cells & abnormality of DNA
- Formation of large cells, cell membrane fragility
- Maturation failure ---- Megaloblastic anemia

2) Castle's Intrinsic factor (I.F.)

• I.F. with B12 forms haematinic principle which

helps in maturation of RBC.

 Deficiency of I.F. -----Loss of vit.B12 due to

a) Failure of its absorptionb) Digestive enzyme action

- Megaloblastic anemia

or

Macrocytic anemia

3) Folic acid

- Factors necessary for Hb synthesis

First class proteins & amino acids
 For protein part of Hb , globin.

2) Iron – For formation of heme part.

- **3)** Copper For absorption of iron from GIT.
- 4) Cobalt & nickel For utilization of iron.

5) Vitamins – Vit. C, riboflavin, nicotinic acid, pyridoxine.

- Definition
- Structure
- Synthesis
- Normal values
- Clinically 14.8 gm% Hb is regarded as 100%.
- O2 carrying capacity
 - 1 gm% Hb carries 1.34 ml O2.
 - In males = 21 ml%
 - In females = 18 ml%
- Catabolism of Hb.