CARDIO-VASCULAR SYSTEM

- Dr. Chetna Ramanuj

REGULATION OF BLOOD PRESSURE

- 1. RAPID BLOOD PRESSURE CONTROL MECHANISM (Nervous regulating mechanism)
- 2. INTERMEDIATE BLOOD PRESSURE CONTROL MECHANISM
- 3. LONG-TERM BLOOD PRESSURE CONTROL MECHANISM

INTERMEDIATE BLOOD PRESSURE CONTROL MECHANISM

Salient features:

- These mechanisms come into play after several minutes of acute pressure changes and reach full function within a few hours
- These mechanisms play their role from few days to few weeks
- They try to control the alterations in blood pressure by altering the blood volume

INTERMEDIATE BLOOD PRESSURE CONTROL MECHANISM

RENIN-ANGIOTENSIN VASOCONSTRICTOR MECHANISM

STRESS RELAXATION AND REVERSE STRESS RELAXATION MECHANISM

CAPILLARY FLUID SHIFT MECHANISM

> ABDOMINAL COMPRESSION REFLEX

RENIN-ANGIOTENSIN VASOCONSTRICTOR MECHANISM

Renin is a small protein enzyme, released by the kidneys when the arterial pressure falls too low.

Renin is synthesized and stored in an inactive form called
 "Prorenin" in the "Juxtaglomerular" (JG) cells of the kidneys

JG cells are modified smooth muscle cells located in the walls of the afferent arterioles immediately proximal to the glomeruli

RENIN-ANGIOTENSIN VASOCONSTRICTOR MECHANISM

A-I is extremely powerful "vasoconstrictor"

It persists in the blood only for 1 to 2 minutes

Rapidly inactivated by "angiotensinase" enzyme

Rapidity and intensity of the vasoconstrictor pressure response to Renin-Angiotensin system

- After hemorrhage, acute fall in BP to 50 mmHg.
- When R.A. system is functional : BP rises back to 83 mmHg
- If R.A. system not functioning : BP rises to 60 mmHg

□ It can be a life saving service in "circulatory shock"

□ It requires 20 minutes to become fully active

RENIN-ANGIOTENSIN VASOCONSTRICTOR MECHANISM

- Effect of angiotensin to cause renal retention of salt and water is also an important mean for long term control of arterial pressure
- Angiotensin cause the kidneys to retain both salt and water in two ways
- 1. Act directly on the kidneys to cause retention
- 2. Causes adrenal glands to secret aldosterone which cause increased salt and water reabsorption by kidney tubules

QUANTITATIVE ANALYSIS OF ARTERIAL PRESSURE CHANGES CAUSED BY ANGIOTENSIN

Role of angiotensin system in maintaining arterial pressure despite wide variations in salt intake

- 50 fold change in Na⁺ intake (1/5 to 10 times) will lead to rise in BP only 4 to 6 mmHg when R.A. system is working {as seen by animal experiments}
- In human, 1/15 to 10 times normal intake of Na⁺ {150 fold} will lead to rise in BP of 17 mmHg only when R.A. system is working

STRESS RELAXATION AND REVERSE STRESS RELAXATION MECHANISM

STRESS RELAXATION MECHANISM :

- It refers to vasodilatation occurring due to stress on the vascular smooth muscles.
- When pressure in the vessels become too high, the vessels become stretched and continue to stretch for minutes or hours.
- This causes relaxation of blood vessels simply by vascular tone adjustment.
- □ This leads to an increase in the capacity of the arterial system with a concomitant fall in blood pressure

STRESS RELAXATION AND REVERSE STRESS RELAXATION MECHANISM

REVERSE STRESS RELAXATION MECHANISM :

- Operates when the BP is low due to less stress on the vessel walls and tries to restore it back to normal.
- <u>Example:</u> when BP falls due to prolonged slow bleeding, there occurs tightening of blood vessel walls by vascular tone adjustment secondary to less stress on the vessel wall (reverse stress relaxation mechanism)
- This mechanism tries to restore the BP back to normal
 This mechanism can correct up to 15 % change in blood volume below normal.

CAPILLARY FLUID SHIFT MECHANISM

This mechanism helps in restoring both low and high BP back to normal

When BP is raised :

The mean capillary pressure is also high resulting in shift of fluid from circulation to the interstitial fluid compartments. This reduces the blood volume to restore the arterial pressure.

CAPILLARY FLUID SHIFT MECHANISM

When BP is lowered :

The mean capillary pressure is also low resulting in absorption of fluid from interstitial fluid compartments to the circulation. Thus the blood volume is increased which helps to restore the blood pressure back to normal

ABDOMINAL COMPRESSION REFLEX

When baroreceptor or chemoreceptor reflex is elicited or whenever any factor stimulate sympathetic vasoconstrictor system:

nerve signals are also transmitted to skeletal nerves to skeletal muscles Increase basal tone of muscle Compresses all venous reservoir of the abdomen Helps to translocate blood out of abdominal vasculature towards heart

LONG-TERM BLOOD PRESSURE CONTROL MECHANISM

RENAL BODY FLUID SYSTEM FOR ARTERIAL PRESSURE CONTROL When the body contains too much ECF The arterial pressure rises The rising pressure in turn has a direct effect to cause the kidneys to excrete the excess ECF Thus returning the pressure back towards normal

Pressure diuresis:

An increase in arterial pressure of only a few mmHg can

double the renal output of water.

This is called pressure diuresis

Pressure natriuresis:

An increase in arterial pressure of only a few mmHg can double the renal output of salt.

This is called pressure natriuresis

RENAL OUTPUT CURVE OR RENAL FUNCTION CURVE

- At 50 mmHg : Urine output 0
- At 100 mmHg : Urine output normal
- At 200 mmHg : Urine output 6-8 times normal

Infinite feedback gain principal:

EQUILIBRIUM POINT : the point at which output equals the intake

Infinite feedback gain principal:

- 1ST Assume that arterial pressure rises to 150 mmHg, renal output of water and salt is about 3 times as great as intake Therefore, the body loses fluid → the blood volume decreases → the arterial pressure decreases
 This –ve balance of fluid will not cease until the pressure falls all the way back exactly to the equilibrium point
- If arterial pressure falls below the equilibrium point, the intake of water and salt would be greater than the output → body fluid volume increases → arterial pressure rises until it return to the equilibrium point

Various arterial pressure control mechanisms at different time level

DEFINITION:

no. of heart beats per minute

Normal value :

60 – 100 / minute (average 72) in adults

< 60 is called : Bradycardia

> 100 is called : Tachycardia

► <u>AGE:</u>

After birth, as age increases, vagal tone increases and HR decreases, but in old age HR is slightly higher due to fall in vagal tone.

Foetal HR	: 140 – 150
At Birth	: 130 – 140
At 12 years	: upto 100
Adults	: 70 – 80
Old age	: upto 100

➤ <u>GENDER</u>:

HR is slightly higher in females as compared to males due to

- Lower systemic BP
- More Resting sympathetic tone

BODY TEMPERATURE:

HR is directly related to the body temp.

- HR rises with rise in body temp. For each 1° F rise in body temp., HR increases by about 10 beats / min.
 It also produces vasodilatation causing fall in BP.
- Fall in Body temp. decreases HR.
 - It also produces vasoconstriction causing BP to rise.

Thus, HR is *inversely* related to the systemic BP (Marey's Law)

THYROTOXICOSIS:

It is associated with high resting HR

Drugs like epinephrine increases HR due to direct action on heart

EMOTIONS:

Emotions like

Excitement, fear, anger etc. are associated with tachycardia

Sudden shock, grief etc. are associated with *bradycardia*

EXERCISE:

HR increases in linear pattern with the severity of the exercise because :

- Increase in sympathetic activity
- Decrease in vagal tone
- Increase in body temperature
- Release of catecholamines and thyroxine
- Change in blood chemistry (hypoxia and hypercapnia)

CONTROL OF HEART RATE

Mainly by two mechanisms:

- 1. Through cardiac innervation
- 2. Through medullary cardiovascular centres

Regulation of heart rate

Mediated via vasomotor center (VMC)

• Marey's reflex (via Baroreceptor reflex) :

Increased B.P. \rightarrow stimulation of baroreceptors \rightarrow Impulses through IX and X cranial nerves \rightarrow nucleus of tractus solitarius \rightarrow stimulation of vasodilator area and inhibition of vasoconstrictor area \rightarrow increase in vagal tone and Decrease sympathetic tone \rightarrow reflex bradycardia

Regulation of heart rate

Mediated via vasomotor center (VMC)

• Bain bridge reflex (via Cardiopulmonary reflex):

Increased venous return \rightarrow stimulation of stretch receptors In right atrium \rightarrow afferent impulses through vagus \rightarrow Inhibition of vasodilator area \rightarrow decrease in vagal tone \rightarrow Tachycardia

Regulation of heart rate

Mediated via vasomotor center (VMC)

<u>Chemo receptor reflex :</u>

low po2, high pco2 and acidosis \rightarrow stimulation of chemoreceptors \rightarrow Impulses through IX and X cranial nerves \rightarrow nucleus of tractus solitarius \rightarrow stimulation of vasomotor center \rightarrow tachycardia

Regulation of heart rate <u>Mediated via vasomotor center (VMC)</u>

• <u>Cushing reflex (via CNS ischemic reflex) :</u>

Increase ICP \rightarrow Increases B.P. due to CNS ischemic reflex \rightarrow Increase B.P. in turn causes reflex bradycardia by Baroreceptor reflex

• Role of higher centers :

some parts of cerebral cortex & limbic system increases heart rate while some other parts decreases heart rate

Regulation of heart rate Mediated via vasomotor center (VMC)

• Role of peripheral afferents :

example- painful stimuli produces tachycardia

• Role of respiratory center :

during inspiration impulse spill over from respiratory center to VMC and heart rate increases (it is called sinus arrhythmia)

Regulation of heart rate Mediated without vasomotor center (VMC)

Role of thyroid hormones & temperature :

T3, T4 & increase temperature directly stimulates SA node and cause tachycardia

HEART RATE

REGULATORY REFLEXES:

- > Marey's Reflex $: \uparrow B.P. \downarrow es HR$
- > Bain bridge Reflex : \uparrow B volume \uparrow es HR
- > Chemo receptor Reflex : $\uparrow pco_2 \uparrow es HR$
- ➤ Cushing's Reflex $: \uparrow ICP \downarrow es HR$

DISCLAIMER

 All figures are taken from Guyton and Hall Textbook of Medical Physiology, 12th Edition.