
DRUG THERAPY FOR BRONCHIAL ASTHMA

Current Understanding of Asthma

- A chronic inflammatory disorder of the airway
- Infiltration of mast cells, eosinophils and lymphocytes
- Airway hyperresponsiveness
- Recurrent episodes of wheezing, coughing and shortness of breath

Commonest chronic disease in children

& adults.

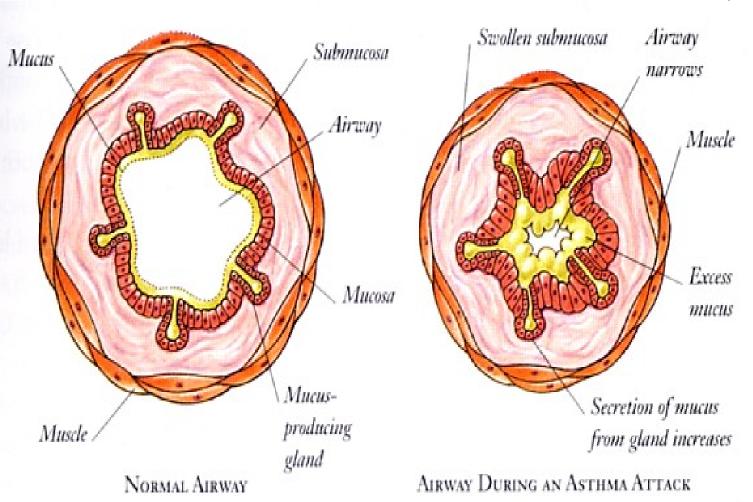
- inflammatory condition in which there is recurrent
 reversible airways obstruction in response to irritant stimuli that are too weak to affect non-asthmatic subjects.
- Reversibility of airways obstruction in asthma contrasts with COPD, where obstruction is not reversible or incompletely reversible, by bronchodilators

Control of Bronchial Tone

- Autonomic Innervation
 - Adrenergic stimulation
 - β: dilation
 - Cholinergic (muscarinic): constriction
- Autocoids: released in asthmatic attack (Leukotrienes and Adenosine)
 - produce bronchoconstriction
 - increase vascular permeability in bronchi and cause mucosal edema

Drug Treatment of Asthma

What is it ? 'A State of bronchial hyperreactivity resulting from a <u>persistent</u> <u>inflammatory process</u> in response to a number of stimuli in a genetically susceptible individual'



Key features of its pathophysiology

o mucosal oedema
o secretion of mucus
o epithelial damage
o bronchoconstriction

Therapy is thus aimed at •Symptomatic relief - relieving bronchoconstriction •Disease modification - reducing

Asthma: Pathological changes

Asthma Triggers

 Allergen exposure e.g. pet dander, pollens etc.

• Exercise/cold-air - drying airway

mucosa.

- O Drugs
- Food additives tartrazines , sulphites
- Viral URTIs especially rhinovirus.

Treatment Goals

To reverse acute episodes

To control recurrent episodes

To reduce bronchial inflammation

Drugs Used in Asthma

Bronchodilators

- <u>Beta-adrenergic agonists</u> relax brochial smooth muscle and decrease microvascular permeabilty
- <u>Muscarinic antagonists</u> inhibit the effects of endenous ACh
- <u>Theophylline</u> reduce the frequency of recurrent bronchospasm

Drugs Used in Asthma (con't.)

- Non-bronchodilators (for chronic use)
 - <u>Corticosteroids</u> control mucus production and edema
 - Cromolyn controls mediator release
 - <u>Leucotriene modulators</u> antagonize mediator receptors or decrease their synthesis

β-ADRENERGIC AGONISTS

- Given by inhalation to avoid systemic effects.
- are most effective bronchodilators.
- ↑ cyclic AMP in smooth muscle cells: tone.
- Various drugs differ in their duration of action & receptor selectivity.
 - Short-acting (3-6 hr) & β2 selective
 Albuterol
 - Short acting & non-selective: Isoproterenol
 - Long-acting (>12 hr) & β2 selective
 Salmeterol

β-ADRENERGIC AGONISTS, contd...

- Useful in prevention of exerciseinduced asthma.
- Albuterol like drugs are useful in acute episodes of asthma
- Prolonged acting Salmeterol used in maintenance treatment (prevent nocturnal attacks of asthma)
- Salmeterol has a slow onset of action & is not recommended for acute episodes of asthma.

β-ADRENERGIC AGONISTS contd....

- β-adrenergic agonists have no antiinflammatory activity.
- Their continuous use may result in desensitization of adrenergic receptors that can be prevented or reversed by corticosteroids
- In high doses these drugs can produce tachycardia, palpitations, and tremor

IPRATROPIUM

- muscarinic receptor antagonist (a synthetic analog of atropine)
- given by inhalation negligible systemic effects

- Used in COPD to decrease cholinergic tone
- Used in asthma in combination with β-adrenergic agonists
- Combination more effective & less toxic than either drug alone
- Has no anti-inflammatory activity

Anti-Muscarinic Agents

- Competitively inhibits the effect of acetylcholine at muscarinic receptors effectively block the contraction of the airway smooth muscle and increase in secretion of mucus
- Ipratropium bromide a quarternary ammonium derivative of atropine
- Delivered by inhalation
- Slightly less effective than beta agonist
- Effective in COPD

Methylxanthine drugs a. caffeine b. theophylline c. theobromide

Mechanism of action

 inhibit the enzyme phosphodiesterase hydrolyses cyclic nucleotide result in high concentration of IC cAMP smooth muscle relaxation

- inhibition of cell surface receptors for adenosine

- anti-inflammatory effect : inhibit the late response of antigenic challenge.

METHYLXANTHINES Theophylline • stimulate respiratory center (CNS), increases sensitivity of respiratory center

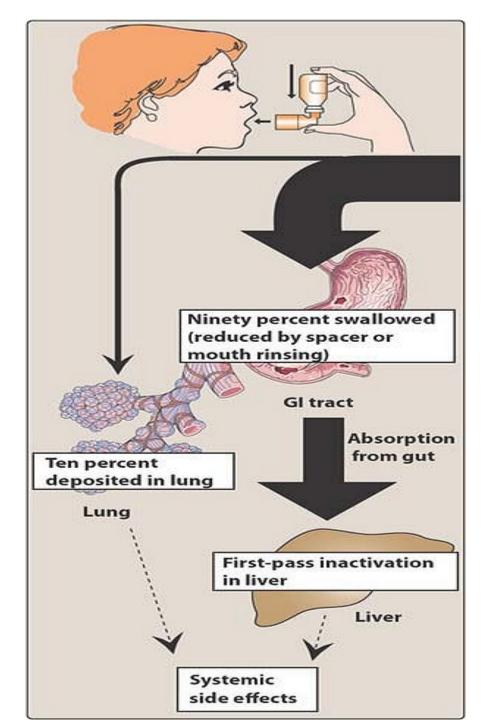
- relaxes smooth muscles of the bronchi,
- ineffective by aerosol, given orally

to pCO2

- effective bronchodilator & has slower onset of action than inhaled β2-adren. Agonists.
- proposed mechanisms: adenosine receptor blockade; phosphodiesterase inhibition in high concentration.

Methylxanthines :Theophylline contd.

narrow safety index (10-20 ug/ml), its plasma concentration are to be monitored

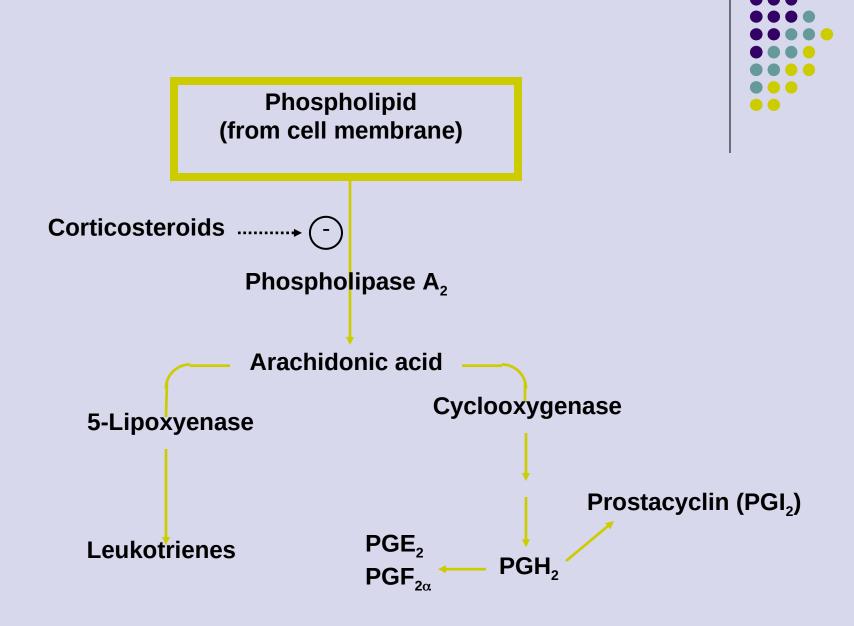

- Due to its high risk/benefit ratio, it is used as an second line or additional therapy
- Clearance is influenced by smoking, and other drugs metabolized by liver.
- Toxicity is dependent on plasma concentration
 - Mild (30 mg/L): nausea, vomiting, headache, insomnia, and nervousness
 - Potentially serious (40 mg/L): sinus tachycardia
 - Severe (45 mg/L): cardiac arrhythmias, seizures

Inhaled steroids

- Most widely used are beclamethasone & budesonide.
- Both are potent & absorbed from GIT and partial first-pass metabolism in liver
- When used up to 1000 µg –day no adrenocortical function effects
- Fluticasone propionate highly selective, poorly absorbed from GIT, subject to 100% first pass metabolism in liver. Safer in children

Pharmacokinetics of inhaled glucocorticoids

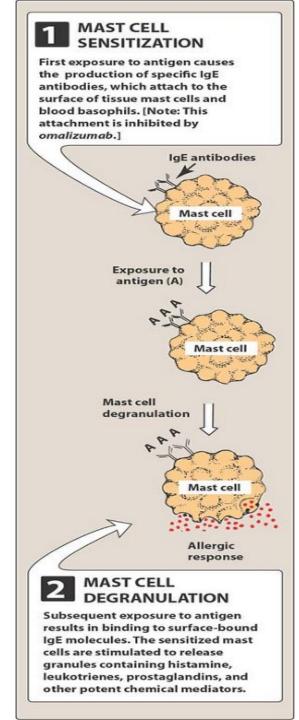
INHALED CORTICOSTEROIDS


- decrease inflammation & edema in respiratory tract
- inhibit phospholipase A2 through synthesis of lipocortin,
- block release of arachidonic acid and its metabolites (leukotrienes)
- also inhibit production pro-inflammatory cytokines
- Used in chronic asthma, lowers the frequency of acute episodes
- are not bronchodilators & are not useful acute attacks
- May cause dysphonia and/or esophageal candidiasis

Side effects of inhaled steroids

- Depression of adrenocortical function
- Effects on bone metabolism
- Effects of growth in children
- Easy bruising & skin thinning
- Cataract formation

SYSTEMIC CORTICOSTEROIDS (Prednisone)

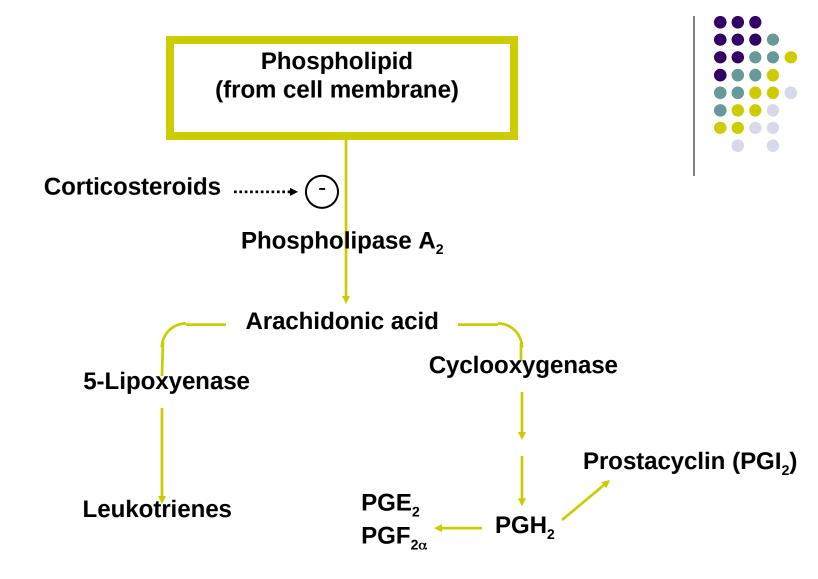


- Oral (or injected) steroids are most effective drugs for asthma, unresponsive to bronchodilators and inhaled steroids.
- After recovery from severe exacerbation, oral corticosteroids are continued for 8 to 10 days
- Alternate-day use decreases adverse effects
- Potential adverse effects: glucose intolerance, sodium and water retention, increased BP, peptic ulcer, osteoporosis, cataract, immunosuppression, ACTH-suppression

CROMOLYN SODIUM

- stabilizes mast cells & decreases airway responsiveness to spasmogens
- useful for prophylaxis only
- not effective in all patients
- more effective in children and adolescents than in older patients
- may take up to 4-6 weeks of its treatment to be effective in chronic asthma
- has no bronchodilating activity
- has virtually no toxicity

Leukotriene Modulators:


Two types:

- 1. LT receptor antagonists: Montelukast , Zafirlukast)
- 2. Inhibitors of LT synthesis: inhibit 5lipoxygenase, prevent conversion of arachidonic acid to leukotrienes: Zileuton
- Are not bronchodilators & not useful in acute episodes of asthma
- Reduce frequency of acute episodes

Leukotriene Modulators (cont'd)

- Less effective antiinflammatory agents than corticosteroids
- Used orally, useful in children in chronic treatment of mid to moderate asthma
- generally well tolerated
- Zileuton can elevate liver enzymes
- Zileuton increase plasma concentrations of theophylline and warfarin because it inhibits cytochrome P450 enzymes in the liver.

Various severities of asthma

- Step-wise pharmacotherapy treatment program for varying severities of asthma
 - Mild Intermittent (Step 1)
 - Mild Persistent (Step 2)
 - Moderate Persistent (Step 3)
 - Severe Persistent (Step 4)

Mild Intermittent Asthma

- Day time symptoms ≤ 2 times a week
- Night time symptoms ≤ 2 times amonth
- PEF or FEV1 \geq 80% of predicted
 - PEF and FEV1 values are only for adults and for children over the age of 5
 - No daily medication needed
 - short-acting bronchodilator (albuterol) MDI as and when required
 - Severe exacerbations may require systemic corticosteroids

Mild Persistent Asthma

- Day time symptoms > 2/week, but < 1/day
- Night time symptoms < 1 night / week
- PEF or FEV1 \geq 80% of predicted
- Step 2 (Mild persistent)
 - Preferred Treatment
 - Low-dose inhaled corticosteroid daily
 - Alternative Treatment (no particular order)
 - Cromolyn
 - Leukotriene receptor antagonist
 - Nedocromil
 - Sustained release theophylline to maintain a blood level of 5-15 mcg/mL

Moderate Persistent Asthma

- Day time symptoms whole day
- Night time symptoms > 1 night / week
- PEF or FEV1 60%-80% of predicted
- Step 3 (Moderate persistent)
 - Preferred Treatment
 - Low-to-medium dose inhaled corticosteroids
 - WITH long-acting inhaled beta2-agonist
 - Alternative Treatment
 - Increase inhaled corticosteroids within the medium dose range
 - Add leukotriene receptor antagonist or theophylline to the inhaled corticosteroid

Severe Persistent Asthma

- Day time symptoms: continual
- Night time symptoms: frequent
- PEF or FEV1 \leq 60% of predicted
- Step 4 (Severe persistent)
 - Preferred Treatment
 - High-dose inhaled corticosteroids
 - AND long-acting inhaled beta2-agonists
 - AND (if needed) oral corticosteroids

Pharmacotherapy for Infants and Young Children (<5 years)

- Step 1(mild intermittent)
 - No daily medication needed

Pharmacotherapy for Infants and Young Children (<5 years)

- Step 2 (mild persistent)
 - Preferred treatment
 - Low-dose inhaled corticosteroids
 - Alternative treatment
 - Cromolyn (nebulizer preferred)
 - OR leukotriene receptor antagonist

Pharmacotherapy for Infants and Young Children (<5 years)

- Step 3 (moderate persistent)
 - Preferred treatment
 - Low-dose inhaled corticosteroids and long-acting beta2-agonist
 - OR Medium-dose inhaled corticosteroids
 - Alternative treatment
 - Low-dose inhaled corticosteroids with either:
 - Leukotriene receptor antagonist
 - OR theophylline

Pharmacotherapy for Infants and Young Children (<5 years)

- Step 4 (severe persistent)
 - Preferred treatment
 - High-dose inhaled corticosteroids
 - AND long-acting inhaled beta2-agonist
 - AND (if needed) Oral corticosteroids
 - For young children, inhaled medications should be given by nebulizer, dry powder inhaler (DPI), or MDI with a chamber/spacer

Acute Exacerbations

- Inhaled albuterol is the treatment of choice in absence of impending respiratory failure
- MDI with spacer as effective as nebulizer with equivalent doses
- Adding an antibiotic during an acute exacerbation is not recommended in the absence of evidence of an acute bacterial infection

Exercise-induced Bronchospasm

 Short acting Beta Agonist are best pretreatment

Table 37-1

RECOMMENDATIONS FOR PHARMACOLOGIC MANAGEMENT OF ASTHMA IN ADULTS AND CHILDREN OLDER THAN 5

ASTHMA SEVERITY	SYMPTOM FREQUENCY	MEDICATIONS
Mild intermittent	<2 days/week, <2 nights/month	None; course of systemic glucocorticoids for occasional, severe exacerbations
Mild persistent	>2 per week but <once day<br="" per="">>2 nights/month</once>	Low-dose inhaled glucocorticoids. Alternate: cromolyn, nedocromil, leukotriene modifier, <i>or</i> sustained release theophylline
Moderate persistent	Daily, >1 night/week	Low- to medium-dose glucocorticoids and long-acting inhaled β_2 -agonists. Alternate: leukotriene modifier or theophylline
Severe persistent	Continual during day, frequent at night	High-dose glucocorticoids and long-acting inhaled β ₂ -agonist and (if needed) systemic glucocorticoids

ACUTE SEVERE ASTHMA (STATUS ASTHMATICUS)

This is a life-threatening emergency

recommendations of the British Thoracic Society

Immediate treatment

- Oxygen by mask (humidified, to help liquefymucus).
- ✓ Salbutamol by nebuliser in a dose of 2.5-5 mg over about 3 min, repeated in 15 min.
- ✓ *Terbutaline* 5-10 mg is an alternative.
- ✓ Prednisolone 30-60 mg p.o. or hydrocortisone
 200 mg i.v.
- ✓ Avoid sedation of any kind.
- ✓ Chest x-ray to exclude pneumothorax

If life-threatening features are present (absent breath sounds, cyanosis, bradycardia, exhausted appearance or PEFR < 30% predicted.

- Ipratropium 0.5 mg should be added to the nebulised B2agonist.
- Give i.v. either salbutamol 250 microgram over10 minutes (as nebulised salbutamol may not be reaching the distal airways) or aminophylline 5 mg/kg.
- Aminophylline should not be given to patients already taking oral theophyllines.
- Alert the intensive care unit

Subsequent management

- If the patient is improving,
- continue: 40-60% oxygen
- Prednisolone 30-60 mg daily or hydrocortisone 200 mg 6-hourly
- Nebulised salbutamol or terbutaline 4-hourly.

If the patient is not improving after 15-30 minutes:

- Continue oxygen and glucocorticoid
- Give nebulised (B2-adrenoceptor agonist more frequently, up to every 15-30 minutes
- Add ipratropium 0.5 mg to nebuliser and repeat 6-hourly until patient is improving.

If the patient is still not improving give:

- i.v. infusion of [B2-adrenoceptor agonist or aminophylline (0.9 microgram/kg/min)
- i.v. infusion of a (B2-adrenoceptor agonist (as above) as an alternative
- Contact the intensive care unit to discuss intubation and mechanical ventilation.

- Monitoring response to treatment
- By peak expiratory flow rate (PEFR) every 15-30 minutes
- Oxygen saturation: maintain > 92%

Drugs which predispose to asthma

BETA BLOCKERS NSAIDS esp aspirin