Antiseptics & Disinfectants

Antiseptics and disinfectants

Antiseptic

* Substance used to treat a person to prevent the occurrence of infection

Disinfectant

* Substance used to treat materials or equipment to remove or inactivate sources of infection

- Agents used on living surfaces
- * (skin, mouth) are called antiseptics while
- Those used for inanimate objects (instruments, privies, water supply) are called disinfectants
- * The term germicide covers both category of drugs.

- Difference between 'disinfection' and 'sterilization'.
- Sterilization means complete killing of all forms of microorganisms,
- disinfection refers to reduction in the number of viable pathogenic microbes to a level that they do not pose a risk to individuals with normal host defence.
- * Thus, disinfectants do not eliminate all microbes.

Origins of antiseptics

- Ignaz Semmelweis (1818 1865) Hungarian physician working in Vienna
 - * Realised that cross contamination was causing a high incidence of death after childbirth
 - * He made doctors wash hands in chloride of lime before touching patients
 - * Dramatically reduced incidence of childbed fever
 - * Met much opposition from medical establishment
 - * Practice stopped when he retired and deaths went up.

Origins of antiseptics

- Semmelweis was not alone in his observations
- A Scottish naval surgeon, Alexander Gordon and an American, Oliver Wendell Holmes made similar observations and proposed similar remedies
 - * and there were others as well
- All were ignored and many women died unnecessarily in childbirth as a result
- It needed a parallel discovery, of micro-organisms as causative agents of disease for the basic ideas to be taken seriously.

Origins of antiseptics

Joseph Lister (1827 - 1912)

- Realised that deaths from operations mostly occurred from infection contracted during the operation as a result of unclean practices.
- * He started using Carbolic acid (phenol) during operations to maintain aseptic conditions with significant improvements
- Like Semmelweiss he initially encountered opposition, but use of his methods by the Germans during the Franco-Prussian war in 1870 provided his major breakthrough and over the next 10 years, the practise of aseptic surgery became accepted.
- * For more information on Lister go to
 - http://web.ukonline.co.uk/b.gardner/Lister.html

A good antiseptic/disinfectant should be:

- (i) Chemically stable.
- * (ii) Cheap.
- (iii) Nonstaining with agreeable colour and odour.
- * (iv) Cidal and not merely static, destroying spores as well
- (v) Active against all pathogens-bacteria, fungi, viruses, protozoa.
 - (vi) Require brief time of exposure.
- * (vii) Able to spread through organic films and
 - enter folds and crevices.
 - (viii) Active even in the presence of blood, pus, exudates and excreta.

An antiseptic in addition should be:

- (i) Rapid in action and exert sustained protection.
- (ii) Nonirritating to tissues, should not delay healing.
- ' (iii) Nonabsorbable, produce minimurn toxicity if absorbed.
- (iv) Nonsensitizing (no allergy).
- * (v) Compatible with soaps and other detergents.

\$pectrum of aetivity of majority of antiseptics/disinfectants

* is wide, reflecting nonselectivity of action.
* However, some are rather selective, e.g.
hexachlorophene, chlorhexidine, quaternary
ammonium antiseptics, gentian violet and acriflavin
are more active on gram-positive than gram-negative
bacteria; silver nitrate is highly active against
gonococci and benzoyl peroxide against P. acnes

Mechanisms of action of germicides can be grouped into:

- Oxidation of bacterial protoplasm.
- Denaturation of bacterial proteins including enzymes.
- Detergent like action increasing permeability of bacterial membrane.

Factors which modify the activity of germicides are:

- * (i) Temperature and pH.
- * (ii) Period of contact with the microorganism.
- * (iii) Nature of microbe involved.
- (iv) Size of innoculum,
- (v) Presence of blood, pus or other organic
- * matter.

* Potency of a germicide is generally expressed by its phenol cofficient or Rideal Walker coefficient,

which is the ratio of the minimum concentration of test drug required to kill a 24 hour culture of B. typhosa in 7.5 minute at 37.5'C to that of phenol under similar conditions.

* Therapeutic index of an antiseptic is defined by comparing the concentration at which it acts on microorganisms with that which produces local irritation, tissue damage or interference with healing.

CLASSIFICATION

 1. Phenol derivatives- Phenol, Cresol, Hexylresorcinol, Chloroxylenol, Hexachlorophene.

- 2. Oxidizing agents: Pot. Permanganate,Hydrogen peroxide, Benzoyl peroxide.
- 3. Halogens: Iodine, Iodophores, Chlorine, Chlorophores.
- 4. Biguanide: Chlorhexidine.
- 5. Quaternary ammonium (Cationic): Cetrimide,
- Benzalkonium chloride, Dequalinium chloride.
- 6. Soaps: of Sod. And Pot.
- 7. Alcohols: Ethanol, Isopropanol.

* 8. Aldehydes: Formaldehyde,Glutaraldehyde.
* 9. Acids: Boric acid, Acetic acid.

10. Metallic salts: Merbromin, Silver nitrate,
 Silver sulfadiazine, Mild silver protein, Zinc sulfate,
 Calamine, Zinc oxide.

- * 11. Dyes: Gentian violet, Acriflavine, Proflavine.
- 12.Furan derivative: Nitrofurazone.

Sources of antiseptics

- Early antiseptics were probably vegetable extracts
 - Many spices contain antibacterial agents
- Essential oils extracted from plants often have antibacterial properties
- Lister used carbolic acid which chemically is a solution of phenol
 - Phenol was originally extracted from coal tar.
 - Coal tar preparations are still used today in therapeutic soaps and shampoos.

Coal tar distillation

- Coal tar is a complex mixture rich in aromatic compounds
- These are first separated by distillation
- Phenol is found in the carbolic oil and is recovered by further distillation and washing with slaked lime (calcium hydroxide) solution
- Nowadays phenol is produced by chemical synthesis.

- Phenol, or carbolic acid was one of the first antiseptics
- it contains a six-membered ring of carbon and hydrogen atoms
- Such compounds are known as aromatic
- The other important part of the phenol molecule is the OH group attached to the ring.
- Such Compounds are known as alcohols
- Thus Phenol is an aromatic alcohol

Properties of phenol

- Although phenol is technically an alcohol, it behaves differently from other alcohols
- It is able to ionise when dissolved in water
- This gives it some of the properties of an acid
- Hence its old name "Carbolic acid"

Phenol as an antiseptic

- The phenol molecule comprises an ionisable part and a hydrocarbon part
- In other words, the molecule resembles those of detergents with hydrophyllic and hydrophobic parts

OH

- This is the key to phenol's action as an antiseptic.
- The OH is the hydrophyllic part and the hydrocarbon ring the hydrophobic part

Phenol as an antiseptic

- Phenol acts as an antiseptic, at least in part, because of its detergent properties
- It solubilises the materials that make up the cell membrane, thus disrupting the cell membrane.
- * Its action is similar to that of cationic surfactants
 - * It is able to replace phospholipids in the cell wall, thus disrupting them

Problems with phenol

- Phenol is a caustic substance and reacts with tissue causing damage.
- The maximum concentration permitted in proprietary preparations is 1%
- At these concentrations, phenol acts as a bacteriostat i.e. it reduces bacterial growth, but does not kill the bacteria
- * A substance that kills bacteria is a *bacteriocide*

Alternatives to phenol

- A number of other phenolic compounds exist which can act as effectively, if not more so than phenol but are less hazardous
- One of the simplest is catechol which contains an extra CH₃ group

- Others include
 - Derivatives of resorcinol (has two OH groups)
 - thymol
 - Various chlorinated compounds

It is a relatively weak agent ,poor action on bacterial spores).

- It is a general protoplasmic poison, injuring microbes and tissue cells alike-at higher concentrations
- causes skin burns and is a caustic
- It acts by disrupting bacterial membranes and denaturing bacterial proteins.
- Organic matter diminishes its action slightly while alkalies and soaps do so profoundly (carbolic soaps are not more germicidal than soap itself).
- It is now seldom employed as an antiseptic, but being cheap, it is used to disinfect urine, faeces, pus, sputum of patients and is sometimes included in antipruritic
- preparations because of its mild local anaesthetic
 action.

- Cresol: It is methyl-phenol; more active (3-10)
- times) and less damaging to tissues.
- Used for disinfection of utensils, excreta and for washing hands.
- Hexylresorcinol : It is a more potent derivative of the phenolic compound resorcinol that is odourless and nonstaining; used as mouthwash, lozenge and as antifungal.

- Chloroxylenol: It has a phenol coefficient of 70;
- * does not coagulate proteins, is noncorrosive,
- nonirritating to intact skin
- It is poorly water soluble; the commercial 4.8% solution (Dettol) is prepared in 9% terpinol and 13% alcohol; used for surgical antisepsis.
- A 0.8% skin cream and soap, 1.4% lubricating obstetric cream (for vaginal examination, use on forceps, etc.), and a mouthwash (Dettolin1%) are also available.
- These preparations lose activity if diluted with water and kept for a time.

- Hexachlorophene :
- This chlorinated phenol acts by inhibiting bacterial enzymes and (in high concentration) causing bacterial lysis.
- It is odourless, nonirritating and does not stain.
- Its activity is reduced by organic matter but not by soap.
- It is commonly incorporated in soap and other cleansing antiseptics for surgical scrub, patient's skin, etc., but is narrow spectrum; kills grampositive but not gram-negative bacteria or spores.

* 2. OXIDIZING AGENTS

- Potassium permanganate- It occurs as purple crystals, highly water soluble, liberates oxygen which oxidizes bacterial protoplasm.
- The available oxygen and germicidal capacity is used up if much organic matter is present-the solution gets decolourised.
- A 1:4000 to 1:10,000 solution (Condy's lotion) is used for gargling, douching, irrigating cavities, urethra and wounds.
- The action is rather slow and higher concentrations cause bums and blistering-popularity therefore has declined.
- It has also been used to disinfect water (wells, ponds) and for stomach wash in alkaloidal poisoning (except atropine and cocaine which are not efficiently oxidized).
- It promotes rusting and is not good for surgical instruments.

Benzoyl peroxide -It is specifically active against P. acnes and used on acne vulgaris

- * Hydrogen peroxide -It liberates nascent oxygen which
- * oxidizes necrotic matter and bacteria.
- A 30% solution produces 10 volumes of oxygen much of which escapes in the molecular form.
- * Hydrogen peroxide has poor penetrability and a weak, transient action. It loses potency on keeping.
- Use therefore is much restricted.

Disinfectants

Chlorine

- Discovered 1774 by a Swede, C.W. Scheele
- It is a pale green, toxic, reactive gas
- It is a powerful irritant and toxin
 - * Used as a gas warfare agent in WWI
 - * very nasty, inflicting lifelong damage on those who survived
 - * The damaged lungs were possibly a factor in the 1918 flu pandemic
- Solution of chlorine in water is both a powerful bleach and disinfectant
 - * Semmelweis had used chloride of lime as his antiseptic

Chlorine disinfectants

- Chlorine is soluble in water forming a weak acid
 Cl₂ + H₂O ⇔ HOCl + Cl- + H⁺
- Resulting solution is an effective bleaching agent and disinfectant
- * The active agent is the HOCl (hypochlorous acid)
 - * Solution not particularly stable & Gradually loses Cl₂
 - * HOCl is attacked by UV

Chlorine disinfectants

- Dissolve Chlorine in NaOH or KOH, and the solution is more stable
 - * $Cl_2 + 2OH \Leftrightarrow OCl + Cl + H_2O$
- Most bleach based disinfectants are solutions of sodium hypochlorite
- If dissolved in acid, sodium hypochlorite liberates chlorine gas
 - * $H^+ + HOCl + Cl^- \Leftrightarrow Cl_2 + H_2O$

Action of hypochlorite

HOCl is said to be an "active" chlorine compound

- * It will chlorinate organic compounds
- HOCl attacks the peptide bond which joins together amino acids in proteins

* This weakens the bond and destroys the protein.

$$\begin{array}{c} & & & \\ &$$

Other chlorine disinfectants

- React hypochlorite with ammonia gives chloramine
 - * $NH_3 + HOCl \Leftrightarrow NH_2Cl + H_2O$
 - * This is unstable, but replaced a hydrogen by an organic group, R; R-NHCl gives a series of useful disinfectants
 - * When dissolved in water, will liberate HOCl fairly slowly making them controllable and more useful for medical applications.
 - * Note: If the Cl is attached directly to the carbon atom, the chlorine is not active, but produces useful solvents.

Other disinfectants

- Chlorine gas is used to disinfect drinking water
 - * Contentious, but safe in suitable doses
 - * Can cause taint of the water
- Iodine is chemically related to chlorine and has proved a useful antiseptic.
 - * Generally best as KI in alcohol solution (tincture of iodine)
 - * HOI is more active than HOCl, so alcohol solution reduces activity.

Quaternary ammonium compounds

- These are cationic surfactants
 - * do not have particularly powerful cleaning properties,
 - * though are be used as fabric softeners
- Structurally similar to phospholipids in cell membranes
 - * Natural quat is choline which is found in phospholipids
 - * Quats disrupt the cell membrane
- * Useful antiseptics, but cannot be taken internally
 - * disrupt blood cell membranes
- * Widely used in the food industry

Choline & Phospholipids

* Choline CH_3 I_+ $H_3C-N-CH_2CH_2OH$ CH_3

Phospholipid

Activity

- Phenol is a hazardous substance
 - * Find out what hazards phenol poses and how these may be avoided or dealt with
- Other phenolic compound effective as antiseptics include thymol, hexachlorophane, chloroxylenol, and trichlorophenol
 - * Find the chemical formula of these
 - * How effective are these as antiseptics?
 - * Some are the basis of proprietary antiseptics. Can you find their names?