

DR. SHAISTA SAIYAD

(MD, Ph.D., ACME, FAIMER)

 CONTROL OF CEREBELLUM IS IPSILATERAL.

CEREBELLUM : SILENT AREAOF CNS

PARTS OF CEREBELLUM

CENTRAL BODY: VERMIS

LATERAL LOBES:
 RIGHT AND LEFT CEREBELLAR
 HEMISPHERES

ANATOMICAL DIVISIONS OF CEREBELLUM

 ANTERIOR LOBE: lingual, lobules centralis and culmen

 POSTERIOR LOBE: lobules simplex, declive, tuber, pyramis, uvula, parafloccule, ansiform and paramedian lobule.

FLOCULONODULAR LOBE: floccules, nodule

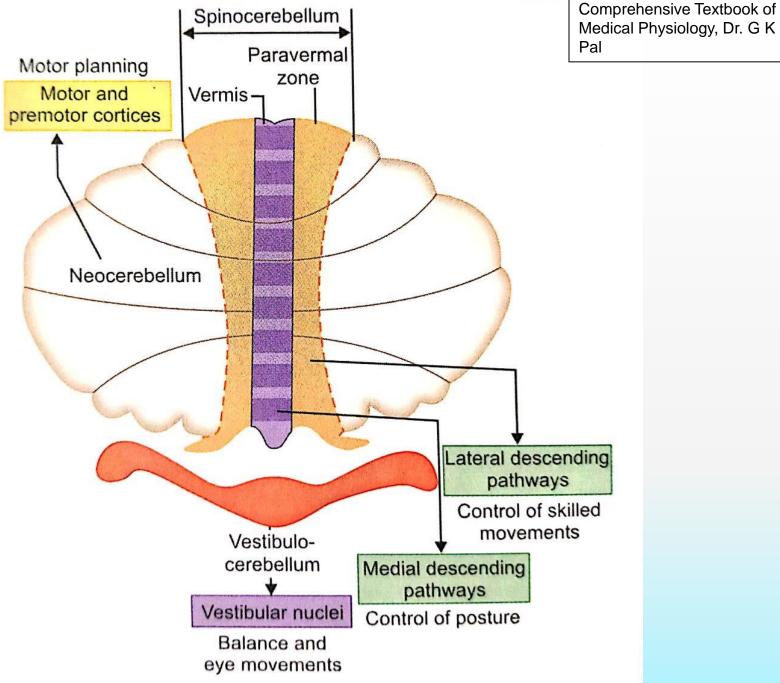


Fig. 132.2: Functional divisions and functions of cerebellum.

DEVELOPMENTAL (PHYLOGENETIC) DIVISIONS

1) ARCHICEREBELLUM-FLOCCULONODULAR LOBE

- 2) PALEOCEREBELLUM -entire anterior lobe except lingual, and following parts of posterior lobe: pyramis, uvula and paraflocculus
- 3) NEOCEREBELLUM: whole of posterior lobe except pyramis and uvula.

FUNCTIONAL DIVISIONS

- VESTIBULOCEREBELLUM: Floculonodular lobe.
 Concerned with body posture and equilibrium, N. fastigius.
- SPINOCEREBELLUM: paleocerebelum: anterior lobe except lingual, and following parts of posterior lobe: pyramis, uvula and paraflocculus, N. globosus and emboliformis.
- CORTICOCEREBELLUM: neocerebellum, posterior lobe except pyramis and uvula, N. dentatus.

DIVISION OF CEREBELLUM

anatomical	anterior lobe
	posterior lobe
	flocculonodular lobe
Phylogenetical	archicerebellum
	palaeocerebellum
	neocerebellum
Functional	vestibulocerebellum (N fatigius)
	spinocerebellum (N interposed)
	cerebrocerebellum (N dentatus)

CEREBELLUM

- CEREBELLAR CORTEX
- WHITE MATTER
- CEREBELLAR NUCLEI

CEREBELLAR NUCLEI

- Cerebellar hemisphere has grey matter outside and white matter inside.
- White matter has many nuclear masses called roof nuclei. From medial to lateral side:
- Nucleus fastigius
- Nucleus globosus
- Nucleus emboliformis
- Nucleus dentatus (LARGEST).
- All efferent connections are made through these nuclei.

Comprehensive Textbook of Medical Physiology, Dr. G K Pal

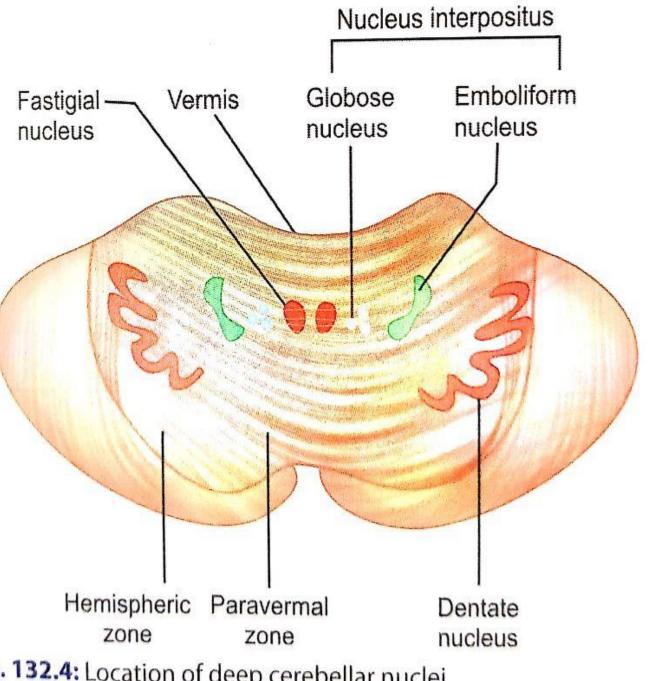


Fig. 132.4: Location of deep cerebellar nuclei.

HISTOLOGY OF CEREBELLUM

OUTER GRAY MATTER (CORTEX): 3 LAYERS

- 1) OUTER MOLECULAR LAYER-
 - * STELLATE CELLS, BASKET CELLS
 - * PARELLEL FIBERS (GRANULE CELLS)
 - * CLIMBING FIBERS (TERMINAL PORTIONS)

Comprehensive Textbook of Medical Physiology, Dr. G K Pal

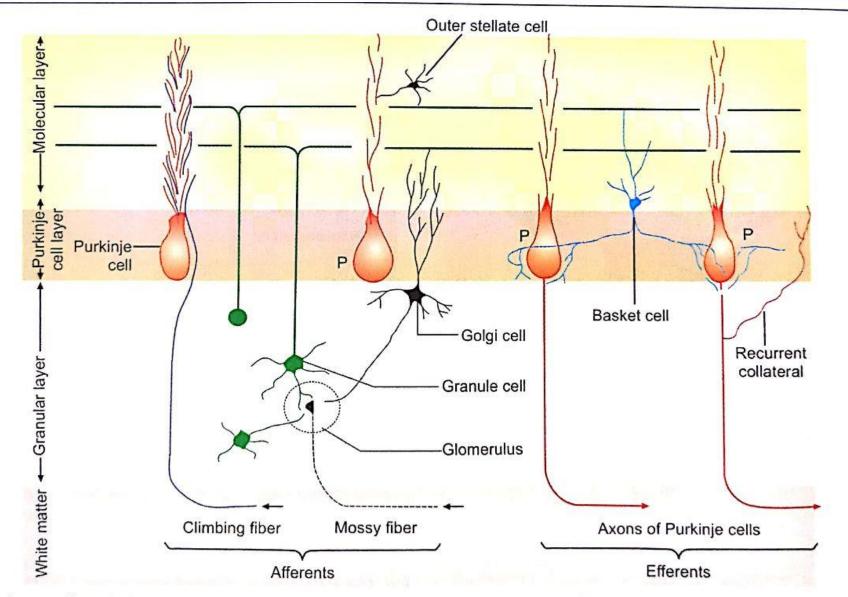


Fig. 132.3: Layers of cerebellar cortex. Note the outer molecular layer, middle Purkinje cell (P) layer and inner granular layer.

2) PURKINJEE LAYER:

FLASK SHAPED PURKINJEE CELLS FINAL COMMON PATHWAY

* 3) GRANULAR LAYER:

GRANULAR CELLS AND GOLGI CELLS

MOSSY FIBERS: GLOMERULUS

ALL CELLS ARE INHIBITORY (SECRETE GABA) EXCEPT GRANULE CELLS (GLUTAMATE).

WHITE MATTER OF CEREBELLUM

- FORMED BY AFFERENT AND EFFERENT NERVE FIBERS.
- THREE BUNDLES:
 - 1) SUPERIOR CEREBELLAR PEDUNCLE (BRACHIA CONJUNCTIVA): MIDBRAIN, MAINLY EFFERENT FIBERS
 - 2) MIDDLE CEREBELLAR PEDUNCLE (BRACHIA PONTIS): PONS, AFFERENT FIBERS
 - 3) INFERIOR CEREBELLAR PEDUNCLE (RESTIFORM BODY): MEDULLA OBLONGATA, AFFERENT FIBERS

CEREBELLAR NEURONAL CIRCUITS

- FEED FORWARD INHIBITION OF PURKINJEE CELLS
- FEED FORWARD INHIBITION OF GRANULE CELLS

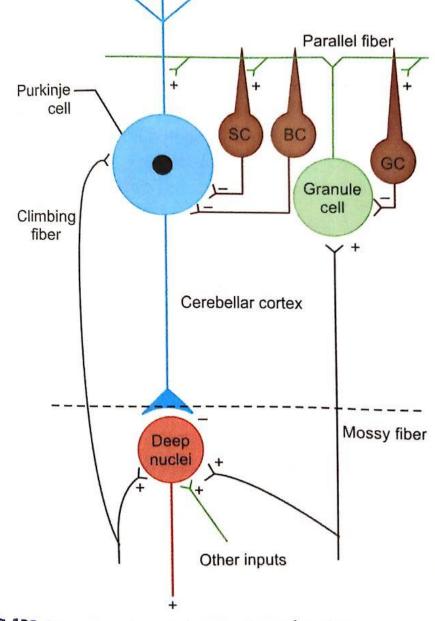
 CEREBELLAR NUCLEI: FAVOURS EXCITATION

AFFERENT FIBERS TO CEREBELLAR CORTEX

 CLIMBING FIBERS: FROM INFERIOR OLIVARY NU. OF MEDULLA VIA OLIVOCEREBELLAR TRACT

CONVEY PROPRIOCEPTIVE IMPULSES FROM CORTEX, DIFFERENT PARTS OF BODY TERMINATE ON PURKINJEE CELLS COLLATERALS TO CEREBELLAR NUCLEI

MOSSY FIBERS:


FROM CORTEX, PONS, MEDULLA AND SPINAL CORD: axons of spinocerebellar, vestibulocerebellar, reticulocerebellar, cuneocerebellar and cortico ponto cerebellar tracts.

DENDRITES OF GRANULE AND GOLGI CELLS SYNAPSE ON MOSSY FIBERS

NEURONAL ACTIVITY IN CEREBELLUM

- climbing fibers excite purkinjee cells and cerebellar nuclei by releasing aspartate
- mossy fibers excite purkinjee cells (via granule cells) and cerebellar nuclei by releasing glutamate
- granule cells excite purkinjee cells, stellate cells, basket cells through parallel fibers by releasing glutamate or aspartate
- stellate cells and basket cells inhibit purkinjee cells through gaba.
- golgi cells inhibit granule cells
- cerebellar nuclei are excited by climbing and mosssy fibers and in turn send excitatory impulses to thalamus and brainstem
 - purkinjee cells inhibit cerebellar nuclei via gaba all this for well organised and coordianted movements

Comprehensive Textbook of Medical Physiology, Dr. G K Pal

Fig. 132.6: Inputs and internal connections of cerebellum. Note, inspite of inhibitory inputs from Purkinje cells, the output of deep cerebellar nuclei is always excitatory. BC: Basket cell; SC: Stellate cell; GC: Golgi cell.

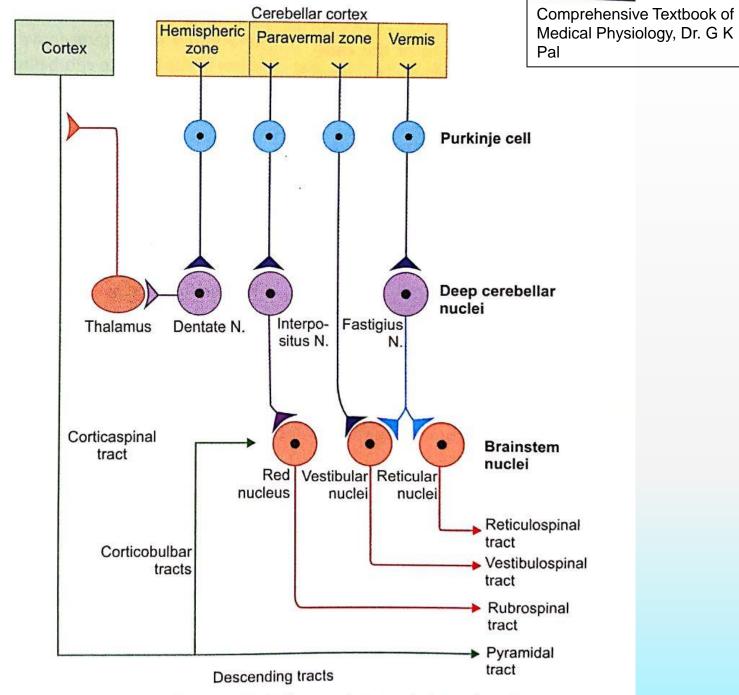


Fig. 132.5: Major output pathways from cerebellum. Note, cerebellum projects to all descending pathways.

Comprehensive Textbook of Medical Physiology, Dr. G K Pal -Midline Motor cortex-Thalamus Corticospinal · tract Red nucleus Cerebellum Dentate nucleus **Pontine** nucleus Reticular nucleus Anterior horn cell Skeletal muscle

Fig. 132.8: The cerebellar connection to explain its comparator of a servo mechanism.

AFFERENTS

- Inferior cerebellar peduncle: (ENTRANCE GATE)
- * Dorsal spinocerebellar tract
- CuneocerebellarT . (external arcuate fiberes)
- Reticulocerebellar fibres,
- Olivocerebellar fibres,
- Vestibulocerebellar fibres.
- middle cerebellar peduncle: cerebro-ponto-cerebellar
 fibres
 - superior cerebellar peduncles,
 - (a) Ventral spinocerebellar tract
 - (b) Tectocerebellar tract

EFFERENTS

superior cerebellar peduncle: (EXIT GATE)

- * Efferent fibres to motor cortex (area 4): They form dentato-rubrothalamo-cortical path, cerebello-thalamocortical path
- * reticulospinal tracts

inferior cerebellar peduncle: cerebellovestibular fibres

FUNCTIONS OF CEREBELLUM

 Maintenance of TONE, POSTURE AND EQUILIBRIUM.

- VESTIBULOCEREBELLUM: POSTURE AND EQUILIBRIUM
- SPINOCEREBELLUM: TONE,
 COORDINATION DURING MOVEMENT
- CORTICOCEREBELLUM: COORDINATION OF SKILLED VOLUNTARY ACTIVITIES

VESTIBULOCEREBELLUM

- MAINTAINANCE OF POSTURE AND EQUILIBRIUM
- POSITION OF EYES IN RELATION TO MOVEMENTS OF THE HEAD
- AFFERENT CONNECTIONS:
- VESTIBULOCEREBELLAR TRACT:
 VESTIBULAR APP. VESTIBULAR NUCLEI CEREBELLAR NUCLEI: Gives information about gravity, linear movement, acceleration.
- SPINOCEREBELLAR AND CUNEOCEREBELLAR T.
- RETICULOCEREBELLAR T.
- EFFERENT CONNECTIONS:
- CEREBELLOVESTIBULAR TRACT- REFLEXES INVOLVING TRUNK, NECK AND EXTREMITIES
 (VESTIBULOSPINAL T.- EXTRAPYRAMIDAL SYSTEM)

SPINOCEREBELLUM (PALEOCEREBELLUM)

CONNECTED WITH SPINAL CORD

EFFERENT CONNECTIONS:

- 1) FASTIGIOBULBART.
- 2) CEREBELLORETICULAR T.
- 3) CEREBELLOOLIVARY T.

AFFERENT CONNECTIONS:

- DORSAL SPINOCEREBELLAR T.
- VENTRAL SPINOCEREBELLAR T.
- CUNEOCEREBELLAR T.
- OLIVOCEREBELLAR T.
- PONTOCEREBELLAR T.
- TECTOCEREBELLAR T.
- TRIGEMINOCEREBELLAR T.

FUNCTIONS OF SPINOCEREBELLUM

- RECEIVING AREA FOR TACTILE,
 PROPRIOCEPTIVE, AUDITORY AND VISUAL IMPULSES
- REGULATES POTURAL REFLEXES BY MODIFYING MUSCLE TONE VIA GAMMA MOTOR NEURONS (ALPHA GAMMA LINKAGE)
- ADJUSTMENT OF POSTURE IN RESPONSE TO AUDITORY AND VISUAL STIMULUS.

CORTICOCEREBELLUM (NEOCEREBELLUM)

- INCLUDES LATERAL PORTIONS OF CEREBELLUM
- LARGEST PART.
- CONNECTED WITH CORTEX.
- NEWER PART
- Concerned with planning, programming and coordination of skilled movements.
- Appropriate regulation of time, rate, range (extent), force and direction of muscular activity.

CONNECTIONS

AFFERENT:

PONTOCEREBELLAR TRACT OLIVOCEREBELLAR TRACT

• EFFERENT:

DENTATOTHALAMIC TRACT
DENTATORUBRAL TRACT

* CEREBRO CEREBELLO CEREBRAL CONNECTION

MECHANISM OF ACTION

- COMPARATOR FUNCTION: compares cortical commands to muscles & actual muscle move.
- DAMPING ACTION: smooth, accurate movements, without oscillations, agonist antagonists.
- CONTROL OF BALLISTIC MOVEMENTS: rapid alternating movements- typing, dancing.
- TIMING AND PROGRAMMING MOVEMENTS: sequential movements- learning- stored in cortex.
 - * Predictive fn.
 - **SERVOMECHANISM**: execution of skilled move.

LESION TO CEREBELLUM

- DISTURBANCES IN TONE AND POSTURE:
- ATONIA: loss or decreased tone
- 2) ATTITUDE
- 3) DEVIATION MOVEMENT: affected arm deviates on stretching
- 4) DEEP REFLEXES: pendular jerks
- 5) NYSTAGMUS: to and fro movements of eyeball

- DISTURBANCES IN EQUILIBRIUM:
- STANDING: legs spread to get broad base, body sways
- 2) GAIT: staggering, drunken git
- DISTURBANCES IN VOLUNTARY MOVEMENTS;
- 1) ATAXIA: lack of coordination (decomposition of move.)
- 2) ASYNERGIA: lack of co. bet. Group of muscles
- 3) ASTHENIA: feebleness or slowness of muscles
- 4) DYSMETRIA: over or undershooting
- 5) INTENTION TREMORS
- 6) NYSTAGMUS: to & fro eyeball movements
- 7 REBOUND PHENOMENON
- 8 DYSARTHRIA: speech disturbance, scanning speech
- 9 ADIADOCHOKINESIA

CLINICAL CONDITIONS INVOLVING CEREBELLUM:

 1) Charcoat's triad: Disturbance in cerebellar connections with brainstem: Nystagmus, dysarthria and intention tremors.

2) Friedreich's disease (hereditary):
 Degeneration of spinocerebellar tracts and other cerebellar connections leading to signs of cerebellar lesions.

THANK YOU