ASCENDING TRACTS

DR. SHAISTA SAIYAD

(MD, Ph.D., ACME, FAIMER)

DERMATOME

AREA OF SKIN SUPPLIED BY SINGLE SPINAL NERVE

REXED LAMINAE

Grey matter is divided into various laminae.

The **Rexed laminae** comprise a system of ten layers of grey matter (I-X), identified in the early 1950s by **Bror Rexed** to label portions of the spinal cord.

'COMPREHENSIVE TEXTBOOK OF PHYSIOLOGY' DR. G K PAL.

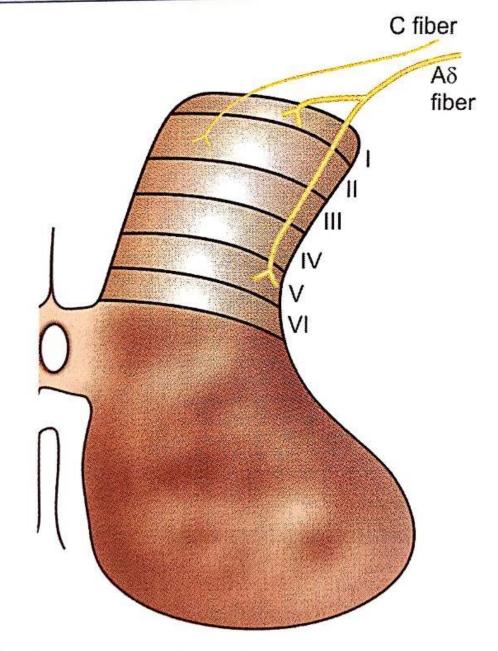


Fig. 120.1: Termination of pain fibers in dorsal horn of spinal cord.

GREY MATTER:

contains cell bodies of neurons, dendrites and parts of axons.

** POSTERIOR/DORSAL HORN: Lamina I-VI

- Neurons present are: Nucleus proprius, Substantia gelatinosa of Rolando (SGR) cells (lamina III and IV), chief sensory cells.
- Lamina VII is called as intermediate zone where there are special type of cells called as Dorsal nucleus or Clarke's column.

- ** ANTERIOR / VENTRAL HORN: (Lamina VIII & IX): Alpha motor neurons, Beta motor neurons, Gamma motor neurons.
- Lamina X forms area of gray matter around spinal cord.

**LATERAL HORN:

Present only in the thoracic and upper lumbar segments. They give rise to pre ganglionic sympathetic fibres.

WHITE MATTER

- Contains myelinated and unmyelinated nerve fibres.
- These fibres are arranged in groups, having similar functions and are called tracts.

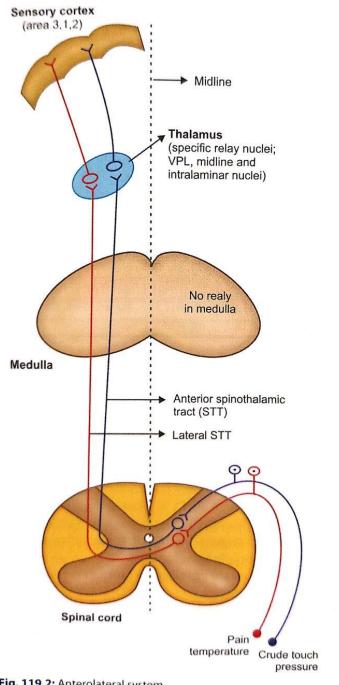
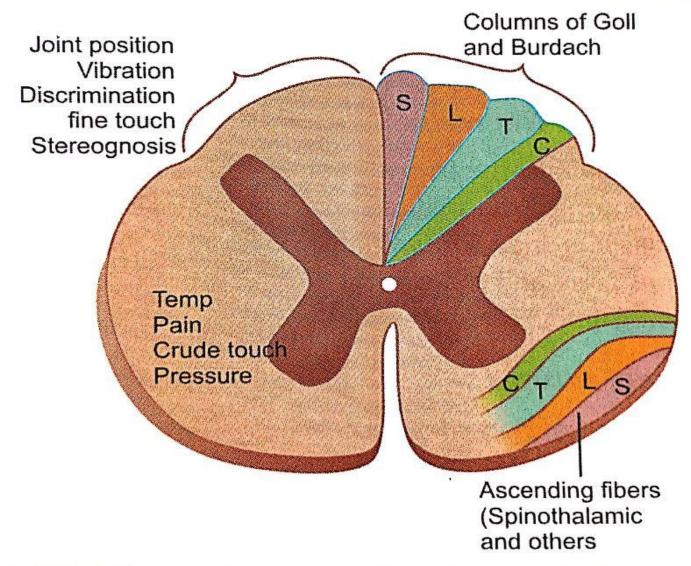



Fig. 119.2: Anterolateral system.

'COMPREHENSIVE TEXTBOOK OF PHYSIOLOGY' DR. G K PAL.

ASCENDING (SENSORY)/ AFFERENT TRACTS

- DORSAL (POSTERIOR) WHITE COLUMN : TRACT OF GOLL AND BURDACH
- LATERAL WHITE COLUMN:
 - 1) LATERAL SPINOTHALAMIC TRACT
 - 2) VENTRAL AND DORSAL SPINOCEREBELLAR TRACT
- VENTRAL(ANTERIOR) WHITE COLUMN: VENTRAL SPINOTHALAMIC TRACT

Fig. 120.3: Topographic organization of pain and other sensory fibers in spinal cord.

OTHER ASCENDING TRACTS

- SPINO TECTAL TRACT
- SPINO OLIVARY TRACT
- SPINO RETICULAR TRACT
- SPINO VESTIBULAR TRACT
- SPINO PONTINE TRACT
- SPINO CORTICAL TRACT

TRACT

- ORIGIN
- SITUATION
- COURSE
- EXTENT
- ORDER NEURONS
- CROSSING
- TERMINATION
- **FUNCTION**
- APPLIED

TRACT OF GOLL AND BURDACH

- POSTERIOR COLUMN
- DORSAL COLUMN
- FASCICULUS GRACILIS, FASCICULUS CUNEATUS

FUNCTIONS

- FINE TOUCH
- TACTILE LOCALISATION
- TACTILE DISCRIMINATION
- KINESTHETIC SENSATIONS SENSE OF POSTURE AND PASSIVE MOVEMENTS (CONCIOUS PROPRIOCEPTIVE SENSATIONS)
- VIBRATION, STEREOGNOSIS
- SOME UNCONCIOUS SENSATIONS
- * TRACT OF GOLL: LOWER HALF OF BODY
 - * TRACT OF BURDACH: UPPER HALF OF

- ORIGIN: AXONS OF BIPOLAR CELLS OF POSTERIOR ROOT GANGLION
- N. GRACILIS AND N. CUNEATUS IN MEDULLA
- ▶ 2ND ORDER NEURONS:
 - a) EXTERNAL ARCUATE FIBERS
 - b) INTERNAL ARCUATE FIBERS

'COMPREHENSIVE TEXTBOOK OF PHYSIOLOGY' DR. G K PAL.

ETERNAL ARCUATE FIBERS

DORSAL

- -INFERIOR CEREBELLAR PEDUNCLE
- -SAME SIDED CEREBELLUM
- -CARRY UNCONCIOUS SENSATIONS

VENTRAL

- -CROSS
- INFERIORCEREBELLAR PEDUNCLE
- CEREBELLUM OF OPPOSITE SIDE
- CARRY UNCONCIOUS SENSATIONS

INTERNAL ARCUATE FIBERS

- CROSS AND FORM MEDIAL LEMNISCUS
- MIDBRAIN
- VENTRO POSTRO LATERAL NUCLEUS OF THALAMUS
- FORM 3RD ORDER NEURONS POSTERIOR 1/3RD OF POST. LIMB OF INTERNAL CAPSULE POST CENTRAL GYRUS OF CEREBRAL CORTEX

APPLIED

- TABES DORSALIS: SENSORY FIBERS IN DORSAL ROOT AND DORSAL TRACT ARE DEGENERATED DUE TO NEUROSYPHILIS
- SENSORY ATAXIA: DUE TO LACK OF INFORMATION FROM PROPRIOCEPTORS DUE TO DAMAGE TO DORSAL TRACT. SUBJECT CANNOT STAND OR WALK STRAIGHT WITH EYES CLOSED.
- * <u>ASTEREOGNOSIS</u>: INABILITY TO RECOGNISE SIZE, SHAPE, FORM OF FAMILIAR OBJECTS WITH EYES CLOSED

Most of the incoming information results from stimulation of

General sensory receptors
Touch / pressure / temperature / pain

Stimulation of proprioceptors
Muscle stretch / tendon / joint

3 major somatic sensory pathways:

- 1. The posterior column pathway
- 2. The spinothalamic pathway
- 3. The spinocerebellar pathway

These pathways involve a chain of neurons:

First-order neuron – from sensory ganglion to the CNS

Second-order neuron – an interneuron located in either the spinal cord or the brain stem

Third-order neuron – carries information from the thalamus to the cerebral cortex

SPINOTHALAMIC TRACT

- ANTERIOR STT- LIES IN ANT. WHITE FUNICULUS
- ▶ LATERAL STT- LIES IN LATERAL WHITE FUNICULUS

ORIGIN:

FIRST ORDER NEURONS- POST. NERVE ROOT GANGLIA

2ND ORDER NERONS-

ANT. STT -CHIEF SENSORY CELLS OF POSTERIOR GRAY HORN

LATERAL STT- SUBSTANTIA GELATINOSA OF ROLANDO.

Cortex (Area 3, 1, 2) Midline VPL Nonspecific nuclei nuclei **Thalamus** Hypothalamus Periaqueductal gray Reticular formation Neospinothalamic pathway Paleospinothalamic pathway A_δ and C fibers Spinal cord

Fig. 120.2: Paleospinothalamic and neospinothalamic pain pathways. Note the collaterals in the brainstem from paleospinothalamic pathway terminating in different brainstem nuclei.

'COMPREHENSIVE TEXTBOOK OF PHYSIOLOGY' DR. G K PAL.

COURSE

- SPINAL CORD— cross to opp. side and enter ant. or lat. white funiculus. crossed fibers then ascend up through other segments of sc.
- <u>BRAINSTEM</u> fibers ascend through bs (called spinal lemniscus) and reach thalamus .some fibers of lat. stt end in reticular formation of brainstem.
- THALAMUS: 2nd order neuron fibers end in thalamic nucleus and give rise to 3rd order neuron fibers.
- CEREBRAL CORTEX: 3rd order neuron fibers terminate in sensory area of cortex.

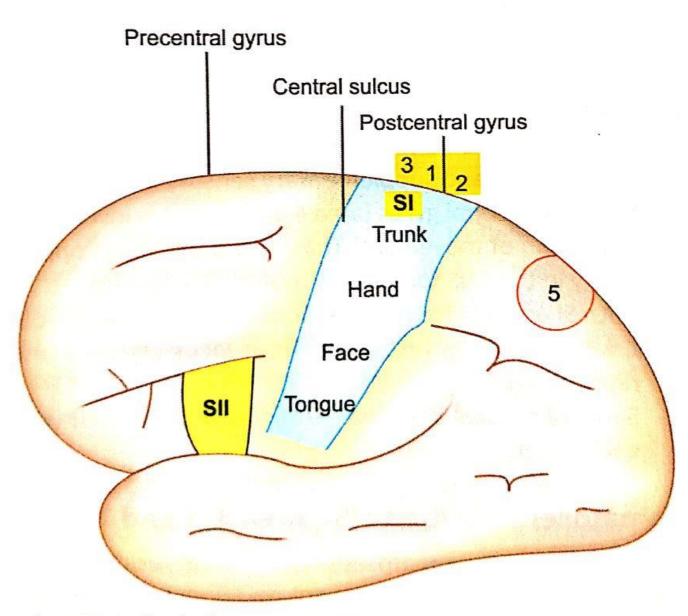


Fig. 123.1: Cortical sensory areas.

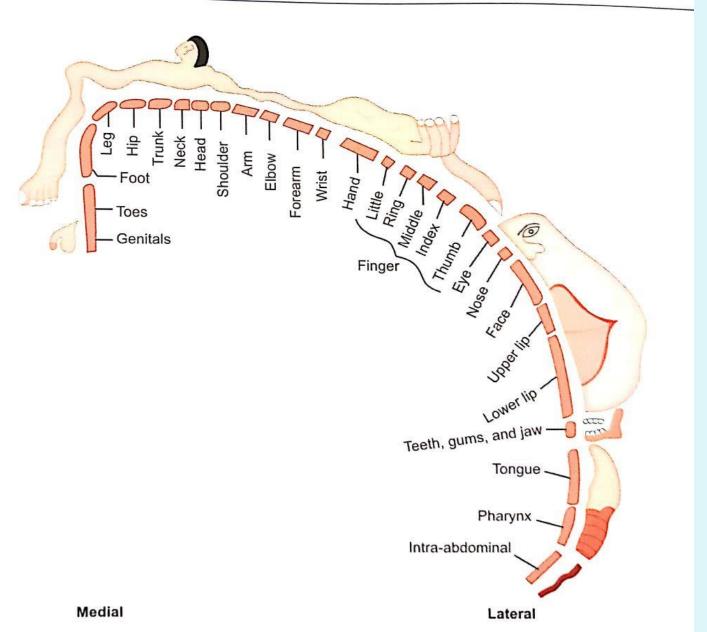


Fig. 123.3: Sensory homunculus. Note, larger cortical representations are from face and hands.

FUNCTION:

- ANTERIOR STT. CARRIES CRUDE TOUCH.
- ► LATERAL STT CARRIES FINE TOUCH, PAIN, TEMPERATURE SENSATIONS.

EFFECT OF LESION:

UNILATERAL LESION CAUSE LOSS OF PAIN, TEMP, AND TOUCH ON OPPOSITE SIDE OF LESION.

Trigeminal Pathway for Fine-Touch Sensation from the Face

Primary afferent fibers that supply the face, teeth, oral and nasal cavities, and cranial meninges synapse in several brainstem nuclei, including the main sensory nucleus and the spinal nucleus of the trigeminal nerve.

This sensory nucleus relays tactile information to the contralateral **ventral posterior medial (VPM) thalamic nucleus** by way of the **trigeminothalamic tract.**

Third-order neurons in the **VPM nucleus** project to the facial area of the somatosensory cortex.

SPINOCEREBELLAR TRACT

- VENTRAL (CROSSED/GOWER'S)
 SPINOCEREBELLAR TRACT
- DORSAL (UNCROSSED/FLECHSIG'S) SPINOCEREBELLAR TRACT
- * <u>LOCATION</u>: SITUATED IN LATERAL WHITE FUNICULUS

ORIGIN:

1ST ORDER NEURONS- POSTERIOR ROOT GANGLIA

2ND ORDER NEURONS– CLARKE'S COLUMN (VENTRAL SC T.)L3–L5 CLARKE'S COLUMN (DORSAL SC T.) C7–T6

COURSE

- * SPINAL CORD: fibers of ventral sc t. immediately cross to opposite isde and ascend up in spinal cord.
- fibers of dorsal sct. ascend through sc without crossing.
- spinocerebellar fibers ascend from sc to medulla, pons and midbrain to reach crebellum.
- CERBELLUM fibers reach cerebellum through cerebellar peduncles and end in vermis of cerebellum, 3rd neurons arise and reach cortex of cerebellum

FUNCTION

CARRY SUBCONCIOUS KINESTHETIC SENSATIONS (PROPRIOCEPTIVE IMPULSES FROM MUSCLES, TENDONS AND JOINTS).

EFFECT OF LESION:

VENTRAL SC T.- LOSS OF SUBCONCIOUS SENSATIONS ON OPPOSITE SIDE OF BODY. DORSAL SC T.- LOSS OF SUBCONCIOUS SENSATIONS ON SAME SIDE OF BODY.

- CEREBRAL CORTEX HAS CONTRALATERAL (OPPOSITE SIDED) CONTROL.
- CEREBELLUM HAS IPSILATERAL (SAME SIDED) CONTROL.

PATHWAY OF TOUCH

- TRACT OF GOLL AND BURDACH: FINE TOUCH
- ANTERIOR SPINOTHALAMIC TRACT: CRUDE TOUCH
- TRIGEMINAL LEMNISCUS: TOUCH FROM FACE REGION

SPINOTECTAL TRACT

SPINAL CORD TO SUPERIOR COLLICULUS (MID BRAIN).

FUNCTION: SPINOVISUAL REFLEXES

SPINORETICULAR TRACT

- SPINAL CORD TO RETICULAR NUCLEI IN REICULAR FORMATION OF BRAINSTEM
- FUNCTION: MAINTENANCE OF CONCIOUSNESS AND AWARENESS.

SPINOVESTIBULAR TRACT

SPINAL CORD TO LATERAL VESTIBULAR NUCLEUS

FUNCTION: CONCERNED WITH POSTURAL REFLEXES.

SPINO OLIVARY TRACT

SPINAL CORD TO INFERIOR OILVARY NUCLEUS

INJURIES OF SPINAL CORD

- ▶ HEMISECTION- BROWN SEQUARD SYNDROME.
- COMPLETE TRANSECTION
- INCOMPLETE TRANSECTION

HEMISECTION OF SPINAL CORD-(BROWN SEQUARD SYNDROME)

- Partial transaction and damage caused only to half of the spinal cord.
- Typical motor and sensory changes develop after recovery from the spinal shock.
- * At the level of section,
- * Below the level of section and
- * Above the level of section.

BELOW THE LEVEL OF LESION

SENSORY CHANGE

- Same side— All fine sensations (fine touch & vibration) & position sense lost (due to damage to tract of Goll and Burdach's) but crude sensations persist.
- Opposite side- All crude sensations (crude touch, pain & temp.) lost due to damage to anterior and lateral spinothalamic tracts but fine sensations persist.

MOTOR CHANGES

- Same side— There is upper motor neuron type of paralysis (increased muscle tone, exaggerated reflexes, Babinski's sign)
- Opposite side- No motor loss

AT THE LEVEL OF SECTION

SENSORY CHANGE

- Same side— All sensations (fine and crude) are lost due to damage to posterior root.
- Opposite side- Only some crude sensations specially pain are lost as many spinothalamic fibers do cross at the same level of spinal cord.

MOTOR CHANGES

- Same side— Lower motor neuron type of paralysis (loss of muscle tone, reflexes, and muscle power) because of damage to the anterior nerve roots.
- Opposite sideneuron type of peresis

ABOVE THE LEVEL OF LESION

SENSORY CHANGE

- Same side— Sensory irritation (hyper aesthesia, i.e. increased cutaneous sensations)
- for one or two segments above the level of section.
- Opposite side- little sensory irritation

MOTOR CHANGES

- Same side- Motor irritation
- Opposite side Little motor irritation

HEMISECTION OF SPINAL CORD-(BROWN SEQUARD SYNDROME)

- EFFECTS BELOW, AT, ABOVE THE LEVEL OF LESION.
- BELOW LEVEL OF LESION: <u>SAME SIDE</u>: LOSS OF FINE TOUCH, TACTILE LOCALISATION AND DISCRIMINATION, VIBRATION ETC.

OPPOSITE SIDE: LOSS OF CRUDE TOUCH, PAIN, TEMPERATURE

COMPLETE TRANSECTION OF SPINAL CORD

- STAGE OF SPINAL SHOCK
- STAGE OF REFLEX ACTIVITY
- STAGE OF REFLEX FAILURE

COMPLETE TRANSECTION OF SC

CAUSES

Complete division of spinal cord: Automobile accidents, gunshot injury, dislocation of spine.

1) Stage of spinal shock or flaccidity-

- -Loss of all spinal cord functions motor, sensory as well as partial autonomic loss.
- Flaccid paralysis
- If lesion above C5, fatal.
- Loss of all reflexes (areflexia)
- loss of all sensation
- low BP, low venous return & weak pulse. (ANS)
- paralysis of bladder & rectum
- Duration- for a minimum of 2 weeks.
- Cause-loss of excitatory discharges from higher centers to spinal neurons.

2) STAGE OF REFLEX ACTIVITY

- first smooth muscle tone returns: leads partial control of bladder & rectum,
- VMC tone returns so BP is restored to normal,
- skeletal tone returns & first in <u>flexor groups</u> of muscles this leads <u>PARAPLEGIA IN FLEXION</u>
- Hyperactive spinal reflexes return, first withdrawal (+ Babinski's sign) then stretch (usually knee jerks)
- other spinal reflexes like postural autonomic, sexual reflexes, mass reflex etc are elicited,
- Still limbs don't support body & walking not possible.

3) STAGE OF REFLEX FAILURE

If complications like infection develop there may be reflex failure, coma and death (septicemia, uremia).

COMPLICATIONS:

Decubitus ulcers, stones, UTI etc

TREATMENT

 Glucocorticoids, antibiotics, nutrition, fluid balance, skin care, bladder function & general nursing, stem cell.

INCOMPLETE TRANSECTION OF SPINAL CORD

STAGE OF SPINAL SHOCK

STAGE OF REFLEX ACTIVITY

* STAGE OF REFLEX FAILURE

STAGE OF REFLEX ACTIVITY

- Tone first appears in extensor muscles. 'paraplegia in extension'.
- Extensor reflexes return first.
- Phillipson reflex
- Extensor thrust reflex
- Crossed extensor reflex
- Mass reflex absent.

THANK YOU